AP Chemistry Chapter 20 Outline

A. Oxidation States

- a. Rules for assigning oxidation numbers:
 - i. Uncombined elements have an oxidation number of 0.
 - ii. For monatomic ions, the ion charge is the oxidation number.
 - iii. In compounds, hydrogen usually has an oxidation number of +1
 - 1. In metal hydrides, hydrogen has an oxidation number of -1.
 - iv. In compounds, oxygen usually has an oxidation number of -2.
 - 1. In peroxides, oxygen has an oxidation number of -1.
 - 2. In a binary compound with fluorine, oxygen has an oxidation number of +2.
 - v. In compounds, fluorine always has an oxidation number of -1.
 - vi. The sum of the oxidation numbers is 0 for a neutral compound
 - vii. For a polyatomic ion, the sum of the oxidation numbers is the charge of a the ion.
- b. A redox reaction is a reaction in which oxidation numbers change
 - *If one substance loses electrons, another substance must gain electrons
 - i. Oxidation = loss of electrons
 - 1. When a substance is oxidized, its oxidation number increases
 - ii. Reduction = gain of electrons
 - 1. When a substance is reduced, its oxidation number decreases.
 - iii. Mnemonics: LEO the lion says GER, or OIL RIG
 - iv. The species that is oxidized is the REDUCING AGENT
 - v. The species that is reduced is the OXIDIZING AGENT

B. Balancing oxidation-reduction reactions

- a. Both mass and charge must be conserved.
 - i. Use "half reactions", i.e., write out the oxidation step and the reduction step separately
 - ii. The number of electrons lost must equal the number of electrons gained.
- b. Balancing redox reactions
 - i. Write skeletons for the oxidation and reduction half reactions.
 - ii. For each half reaction, BE SURE YOU CAN DO THIS!
 - 1. Balance the elements other than H and O.
 - 2. Add H₂O to balance O atoms.
 - 3. Add H⁺ to balance H atoms.
 - 4. Add e to balance charge; the sum of the charges should be the same on both sides.
 - 5. Multiply the half-reactions by integers to equal the numbers of electrons in both half reactions.
 - 6. Add the two half-reactions and simplify.
 - iii. If balancing in basic conditions, then add OH⁻ to neutralize any H⁺ and simplify.

- C. Voltaic Cells (aka galvanic cells)
 - a. The energy released in a spontaneous redox reaction can be used to perform electrical work.
 - i. Physically separate the reduction half from the oxidation half to create a flow of electrons through an external circuit.
 - b. A electrode is a strip of solid metal, connected to external circuit
 - i. The anode is the electrode where oxidation occurs
 - 1. Negative electrode (by convention)
 - 2. During reaction, the anode will lose mass (as metal turns into ions in solution)
 - ii. The cathode is the electrode where reduction occurs
 - 1. Positive electrode (by convention)
 - 2. During reduction, the cathode will gain mass (as ions gaining electrons deposit on electrode)
 - iii. Useful mnemonics:
 - 1. AN OX
 - 2. RED CAT
 - c. A half cell is a (metal) electrode immersed in a solution of its own ions
 - i. anode solution will become more concentrated during reaction
 - ii. cathode solution will become less concentrated during reaction
 - iii. Electrons travel from the anode through the external wire to the cathode.
 - iv. Salt bridge = allows ions to move to maintain charge neutrality in both half-cells
 - 1. Anions travel toward the anode
 - 2. Cations travel toward the cathode

You need to be able to generate correctly labeled sketches of the components of a voltaic cell

- D. Cell EMF under standard conditions
 - a. 1 volt = 1 J/1 C (a couloumb is a mole of electrons)
 - b. Electrons flow from the anode to the cathode because of a difference in potential energy.
 - i. Potential energy of electrons is higher in the anode than in the cathode.
 - ii. Electromotive force (EMF) is the potential difference that pushes electrons through the external circuit
 - iii. Cell potential = the EMF of a voltaic cell = cell voltage = E_{cell}
 - iv. For spontaneous reactions (i.e. voltaic cells), E_{cell} >0
 - v. Standard conditions = 1 M concentration, 1 atm (for gases), 25°C
 - c. Standard reduction potential = a measure of the tendency of a reduction halfreaction to occur, relative to a standard= E°
 - i. Standard hydrogen electrode $E^{o} = 0$ by convention
 - ii. The more positive the value of E^o, the greater the tendency of the reactant of the half-reaction to be reduced.
 - 1. Half reaction with the higher $E^{o} \rightarrow$ stronger oxidizing agent

- iii. The more negative the value of $E^{\rm o}$, the less tendency for this reduction reaction to occur
 - 1. i.e, the reverse, oxidation half-reaction becomes more likely!
 - 2. Half reaction with the lower $E^0 \rightarrow$ stronger reducing agent
- iv. Tabulated for many reduction half-reactions
- v. E° is an intensive property!
 - 1. Multiplying a half-reaction by a constant value does not change the value of E°
- d. To find E_{cell},
 - i. Find half-reactions on table of standard reduction potentials
 - ii. The reaction that is higher: keep as written (i.e., reduction)

This reaction occurs at the CATHODE

- iii. The reaction that is lower: reverse, and change the sign of E^o
 This reaction occurs at the ANODE
- iv. The sum of the Eo values gives E_{cell}
- v. The sum of the reactions (after equalizing the number of e- lost and gained) gives the overall reaction for the cell

E. Free energy and redox reactions

- a. Any reaction that can occur in a voltaic cell to produce a positive EMF must be spontaneous.
 - i. A positive EMF value indicates a spontaneous process.
 - ii. A negative EMF value indicates a non-spontaneous process.
- b. $\Delta G^{\circ} = -nFE^{\circ}$ You need to be able to apply this equation

n =the number of electrons transferred in the reaction

 \mathcal{F} = Faraday's constant = the quantity of electrical charge on one mole of electrons = 96485 C/mol

F. Cell EMF under nonstandard conditions

- a. As a battery runs, the reactant and product concentrations change. Eventually, the battery is "dead."
 - i. A dead battery is a system at equilibrium!
 - ii. Cell EMF depends on reactant and product concentrations
- b. Nernst equation
 - i. In general, if reactants increase relative to products, EMF increases
 - ii. If products increase relative to reactants, EMF decreases

iii.
$$E_{cell} = E^o - \frac{0.0592}{n} log Q = E^o - \frac{0.0592}{n} log \frac{[products]}{[reactants]}$$

- iv. As Q increases, E_{cell} will decrease
- v. If Q decreases (perhaps if the concentration of reactants is altered when the cell is constructed), Ecell will increase compared to E^o
- c. Concentration cell = cell based solely on the EMF generated because of a difference in concentration
 - i. $E^{o} = 0$ for these cells, so the ratio of product to reactant concentrations in the two half-cells is responsible for E_{cell}
 - ii. Basis for pH meters & function of nerve cells

You are not expected to know sections 20.7 and 20.8 in any detail for the AP exam

G. Electrolysis

- a. It is possible to use electrical energy to cause non-spontaneous redox reactions to occur.
 - i. Electrolysis reactions = reactions driven by an outside source of electrical energy
 - ii. E_{cell} is < 0
- b. Electrolytic cells consist of two electrodes in a molten salt or solution
 - i. Oxidation occurs at the anode
 - ii. In electrolytic cells, the anode is the positive electrode
 - iii. Reduction occurs at the cathode

In electrolytic cells, the cathode is the negative electrode

- iv. For a more detailed discussion of electrolysis reactions, go to the packet on electrolysis from the Ultimate Chemical Equations book.
- c. Quantitative aspects of electrolyis
 - i. Couloumb = amperes x seconds
 - ii. To calculate the quantities of substances involved in an electrolytic process:

1.

grams metal =
$$(amperes) \times (sec \ onds) \left(\frac{1mole \ e -}{96485 \ C} \right) \left(\frac{1mole \ metal}{n \ e -} \right) \left(\frac{gfm \ of \ metal}{1 \ mole} \right)$$

2. n = number of electrons needed to go from cation to neutral atom for that metal

You must be able to do these calculations!