AP Chemistry Chapter 19 Outline

- A. Chemical Thermodynamics
 - a. Energy is conserved, i.e., it is neither created nor destroyed in any process.
 - i. $\Delta E = q + w$
 - ii. The quantity of energy lost by a system equals the quantity gained by its surroundings.
 - b. A spontaneous process proceeds on its own without any outside assistance
 - i. Reactions that are <u>spontaneous</u> in one direction are nonspontaneous in the opposite direction.
 - 1. Experimental conditions—temperature, pressure—may determine if a process is spontaneous.
 - 2. Just because a process is spontaneous doesn't mean it will occur at an observable rate.
 - ii. Thermodynamics tells us the direction and extent of a rxn but nothing about the speed of the reaction.
 - c. <u>State functions</u> are properties that define a state but don't depend on how that state was reached
 - i. q and w are not state functions: they depend on the path taken
 - ii. Temperature, internal energy, and enthalpy are state functions
 - d. In a reversible process a system is changed in such a way that the system and surroundings can be restored to their original state by exactly reversing the change
 - i. A reversible change produces the maximum amount of work that can be achieved by the system on the surroundings.
 - ii. Irreversible process is one that cannot simply be reversed to restore the system and surrounding to their original states
 - 1. All real processes are irreversible.
 - 2. Any spontaneous process is irreversible.
 - a. Even if the system is returned to its original condition, the surroundings will have changed.
- B. Entropy and the second law of thermodynamics
 - a. Entropy, S, is associated with the amount of randomness in a system.
 - i. S is a state function
 - ii. $\Delta S = S_{\text{final}} S_{\text{initial}}$
 - iii. if T is constant, $\Delta S = \frac{q_{rev}}{T}$ for any process (T in Kelvin) where q is the

enthalpy change for an isothermal process—such as a phase change

- b. Entropy increases in any spontaneous process.
 - i. The sum of the entropy change of the system and the surroundings for any spontaneous process is always greater than zero.
 - ii. Any irreversible process results in an overall increase in entropy.
 - iii. A reversible process results in no overall change in entropy.
- c. Second Law of Thermodynamics: The total entropy of the universe increases in any spontaneous process.

C. The Molecular Interpretation of Entropy

- a. Molecular motions and energy
 - i. KMT: The average kinetic energy of molecules of an ideal gas is directly proportional to the absolute temperature of the gas.
 - ii. Hotter systems have a broader distribution of molecular speeds.
 - iii. Three kinds of molecular motion:
 - 1. Translational: moving in a direction (changing coordinates)
 - 2. Vibrational: squishing and separating, as if on a spring
 - 3. Rotational: tumbling or spinning
- b. Boltzmann's equation and microstates
 - i. Microstate = "snapshot" or single possible arrangement of the positions and energies of the individual particle in a sample of matter
 - 1. Entropy increases with the number of microstates of the system.
 - 2. Increased freedom of motion: Gases have more entropy than liquids or solutions, which have more entropy than solids.
 - 3. Increased dispersion (spreading out) of energy
 - 4. Increased randomness
 - a. Note: dissolving of salts with highly charged ions can result in a net decrease of entropy! (waters of hydration can be thought of as being more confined)
 - ii. Each thermodynamic state has a characteristic number of microstates, W, associated with it
 - 1. In general, the number of microstates available to a system increases with an increase in volume, an increase in temperature, or an increase in the number of particles.
 - iii. $S = k \ln W$ (For this course, this isn't an equation you're expected to do calculations with on a test)
- c. Third Law of Thermodynamics
 - i. The entropy of a pure crystalline substance at absolute zero is zero.
 - ii. A perfect crystal, with no thermal motion, can have only one microstate!

D. Entropy Changes in Chemical Reactions

- a. Standard molar entropies are usually reported as J/mol K for the pure substance at 1 atm pressure.
 - i. The standard molar entropies of elements are NOT zero!
 - ii. The standard molar entropies of gases are greater than those of liquids and solids.
 - iii. Standard molar entropies increase with increasing molar mass.
 - iv. Standard molar entropies generally increase with an increasing number of atoms in the formula (more degrees of freedom for motion).
 - 1. $\Delta S^o = \Sigma n S^o(products) \Sigma n S^o(reactants)$ You need to be able to do these calculations!

- b. Entropy changes in the surroundings
 - i. Remember: the surroundings serve essentially as a large, constant temperature heat source (or heat sink)
 - ii. The entropy change of the surroundings depends on how much heat is absorbed or released by the system
 - 1. If the system undergoes an exothermic process, the surroundings will experience an increase in entropy, and vice-versa
 - 2. $\Delta S_{surr} = \frac{-q_{sys}}{T}$ where q is the enthalpy change for an isothermal process at constant pressure

E. Gibb's Free Energy

a. $\Delta G = \Delta H - T\Delta S$ Be able to do these calculations!

Watch units for ΔH (often given in kJ/mol), ΔS (often given in J/K), T in Kelvin

- b. Use ΔH , ΔS to predict whether a given reaction occurring at constant temperature and pressure will be spontaneous
 - i. If ΔG is negative, the reaction is spontaneous in the forward direction.
 - ii. If ΔG is zero, the reaction is at equilibrium.
 - iii. If ΔG is positive, the reaction is nonspontaneous (but the reverse reaction will be spontaneous).
- c. ΔG is sometimes called the "driving force" of the reaction
 - i. Free energy is a state function
 - ii. Free energy values have been tabulated at standard conditions
 - iii. Unlike enthalpy and entropy, there is no physical property of matter that relates to Gibbs free energy
 - 1. $\Delta G^o = \Sigma n G^o(products) \Sigma n G^o(reactants)$ You need to be able to do these calculations
- d. Free energy and temperature
 - i. The sign of ΔG depends on the signs and magnitudes of ΔH and $T\Delta S$. You must know or be able to figure out these relationships!

Sign of ΔH	Sign of ΔS	Sign of ΔG	Comments
-	+	-	Rxn is spontaneous at all
			temperatures
+	-	+	Rxn is nonspontaneous at
			all temperatures
-	-	indeterminate	Spontaneous at low T
			(enthalpy driven at low T)
+	+	indeterminate	Spontaneous at high T
			(entropy driven at high T)

ii. For the indeterminate cases, the enthalpy term dominates at low temperatures; the entropy term dominates at high temperatures.

- iii. One type of common problem: above/below what temperature will a certain rxn be spontaneous? Set $\Delta G = 0$, solve for T
- F. Free energy and the equilibrium constant
 - a. For rxns at nonstandard conditions (most reactions occur at nonstandard conditions!)
 - i. $\Delta G = \Delta G^{o} + RT \ln Q$
 - 1. R is the universal gas constant (J/mol K)
 - 2. Q is the reaction quotient (ratio of products/reactants right now)
 - b. $\Delta G^{0} = -RT \ln K$ Know and be able to use this equation
 - c. $K = e^{-\Delta G^{o}/RT}$ Know and be able to use this equation, too
 - i. Pay attention to units: J, kJ, Kelvin temperature
 - ii. Use the R value 8.314 J/mol K
 - d. Relating Gibbs free energy and the equilibrium constant
 - i. If ΔG^{0} is negative, K> 1 If the reaction occurs spontaneously, products will be favored
 - ii. If ΔG^o is positive, K < 1 If the reaction is nonspontaneous as written, reactants will be favored
 - iii. If $\Delta G^{o} = 0$, K = 1