AP Chemistry

Chapter 16 Outline

- 1. Acids and Bases
 - a. Operational Definitions (characteristic properties)
 - i. Acids taste sour, turn litmus paper red and react with certain metals to release hydrogen gas.
 - ii. Bases taste bitter, feel slippery, turn litmus paper blue and phenolphthalein pink.
 - b. Arrhenius acid-base theory (aqueous solutions)
 - i. Acids produce H⁺ ions in water
 - 1. Ex. HCl
 - ii. Bases produce OH ions in water
 - 1. Example: NaOH
- 2. Brønsted-Lowry Acids and Bases
 - a. An H⁺ ion is a bare proton, with no electrons
 - i. Tends to form hydronium ions, H₃O⁺ in water
 - b. Bronsted-Lowry theory emphasizes proton transfer reactions
 - i. B-L acid: a substance that can donate a proton to another substance
 - ii. B-L base: a substance that can accept a proton
 - iii. Amphiprotic: can act as either an acid OR a base
 - c. Conjugate acid-base pairs: HX and X
 - i. One is a reactant, the other is a product
 - ii. Formulas differ only by a H⁺
 - iii. Two sets of conjugate pairs in any B-L reaction
 - d. Not all acids and bases are equally good at donating or accepting protons
 - i. The stronger the acid, the weaker its conjugate base; the stronger a base, the weaker its conjugate acid.
 - 1. The conjugate bases of strong acids have practically no tendency to accept protons.
 - 2. The conjugate bases of weak acids are weak bases.\
 - ii. The equilibrium position favors transfer of the proton to the stronger base.
 - 1. The stronger acid and the stronger base will react to form the weaker acid and the weaker base.
- 3. The autoionization of water $H_2O + H_2O \leftrightarrow H_3O^+ + OH^$
 - a. No individual molecule remains ionized for very long!
 - b. $K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$ at $25^{\circ}C$ Memorize this:
 - i. This is true in ANY (dilute) aqueous solution
 - 1. If $[H_3O^+] = [OH^-]$ the solution is "neutral"
 - 2. If $[H_3O^+] > [OH^-]$ the solution is acidic
 - 3. If $[H_3O^+] < [OH^-]$ the solution is basic

- 4. The <u>pH scale</u> Know this entire section!
 - a. [H₃O⁺] in a solution is usually very small
 - i. $pH = -log[H_3O^+] \text{ or } pH = -log[H^+]$
 - b. the pH of a neutral solution is 7.00 at 25°C
 - i. the pH of an acidic solution is <7
 - ii. the pH of a basic solution is >7
 - c. for mental math: if $[H_3O^+]$ is 1×10^{-x} , pH = x (you can use this to estimate pH)
 - d. $pOH = -log[OH^-]$
- Be able to do calculations with these equations!
- e. pH + pOH = 14
- f. Measuring pH
 - i. Use a pH meter
 - ii. Use indicators (less precise)

5. Strong acids and bases

- a. Strong electrolytes that exist in aqueous solutions are found entirely as ions
 - i. 100% dissociation
 - ii. Memorize the strong acids: HCl, HBr, HI, HNO₃, HClO₃, HClO₄, H₂SO₄
- b. In aqueous solutions of strong acids, the acid is the only significant source of H⁺ ions
 - i. Typically ignore the H⁺ concentration from the autoionization of water
 - ii. $[H^{+}]$ = the original concentration of the acid for monoprotic acids
- c. Memorize the strong bases: hydroxides of the alkali metals and the heavier alkaline earth metals
 - i. Basic anhydrides: metal oxides will form hydroxides when dissolved in water

6. Weak acids

- a. Most acidic substances are weak acids, only partially ionized in solution
 - i. Typically less than 5% of the molecules dissociate
- b. $HA(aq) \rightleftharpoons H^{+}(aq) + A^{-}(aq)$ o
- or $HA(aq) + H_2O(\ell) \rightleftharpoons H_3O^+(aq) + A^-(aq)$

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

or
$$K_a = \frac{[H_3 O^+][A^-]}{[HA]}$$

- 1. Only H atoms attached to oxygen atoms show acidic behavior
- 2. The larger the value of K_a , the stronger the acid
- c. Classic problem type: Calculating K_a from pH
 - i. Write out balanced equation & Ka expression
 - ii. Set up an ICE table to find concentrations of the species involved
 - 1. The initial $[H^{+}] = 10^{-pH}$
 - 2. Unless you are told otherwise, assume $[A^-] = [H^+]$
 - 3. Assume that (initial acid concentration change) ≈(initial acid concentration);
 - 4. This approximation is acceptable if the % ionization is < 5% or if K_a is 10^{-4} or smaller (this will avoid needing to use the quadratic formula)
 - iii. Substitute into K_a expression and evaluate

d. The pH of a weak acid solution is higher than that of a strong acid of the same molarity

i. %
$$ionization = \frac{change\ in\ [HA]}{initial\ [HA]} \times 100$$

- e. Polyprotic acids have more than one ionizable hydrogen atom.
 - i. $H_2A \leftrightarrow H^+ + HA^-$

$$K_{a1}$$

- ii. $HA^- \leftrightarrow H^+ + A^{2-}$
- K_{a2}
- iii. It is always easier to remove the first proton than following protons.
 - 1. $K_{a1} > Ka2$
 - 2. As long as successive K_a values differ by a factor of 10^3 or more, consider only Ka_1

7. Weak bases

- a. Weak bases may either ...
 - i. Have a pair of nonbonding electrons that can accept a proton OR
 - ii. be the anions of weak acids
- b. $B(aq) + H_2O \leftrightarrow HB^+(aq) + OH^-(aq)$

i.
$$K_b = \frac{[HB^+][OH^-]}{[B]}$$

- c. You must be able to solve equilibrium problems involving weak bases
 - 1. Start with a balanced equation and K_b expression
 - 2. Unless you are told otherwise, assume that $[HB^+] = [OH^-]$
 - 3. Assume that x <<initial concentration in the ICE table
 - 4. Solve for [OH⁻]
 - 5. $[OH^{-}] \rightarrow pOH \rightarrow pH$
- 8. Relationship between K_a and K_b
 - a. $K_a \times K_b = K_w$ for a conjugate acid-base pair! MEMORIZE THIS
 - i. If you know K_a for a weak acid, you can use this relationship to solve for K_b of its conjugate base
 - ii. In some problems (especially involving weak bases) you may only be given the K_a for conjugate acid!
 - b. Often, K_a values are reported as \underline{pK}_a (-log K_a)
 - i. If the pKa is very large, the acid is weak
 - ii. If the pKa is very negative, the acid is strong
 - iii. $pK_a + pK_b = pK_w = 14.00 \text{ at } 25^{\circ}C$
- 9. Acid-base properties of salt solutions
 - a. Ions can exhibit acidic or basic behavior
 - b. Hydrolysis reaction: salt + water \rightarrow acid + base
 - c. Predicting the pH of salt solutions:
 - i. An anion that is the conjugate base of a strong acid (such as Cl^- , NO_3^- , I^- , Br^- , and ClO_4^-) will not affect the pH.
 - ii. An anion that is the conjugate base of a weak acid will produce a basic solution.

- iii. A cation that is the conjugate acid of a weak base will produce an acidic solution.
- iv. The cations of the strong Arrhenius bases (i.e., the group 1 metal cations and the lighter group 2 metal cations) will not affect the pH.
- v. Other metal ions (especially transition metal cations) will produce an acidic solution.
- vi. If both the conjugate base of a weak acid and the conjugate acid of a weak base are present, the ion with the larger K_a or K_b value will determine the pH of the solution.

10. Acid-Base behavior and chemical structure

- a. Three main factors:
 - i. A molecule containing hydrogen will transfer a proton only if the H-X bond is polarized so that the H atom has a δ + charge and the X atom has a δ charge
 - ii. Very strong bonds are less easily dissociated than weaker ones.
 - iii. The greater the stability of the conjugate base, the stronger the acid.
- b. Binary Acids
 - i. Acidity decreases down a column
 - 1. H-X bond strength decreases as X increases in atomic radius
 - ii. Acidity increases L-R in a period
 - iii. H-X bonds become more polar going L-R
- c. Oxyacids
 - i. As central atom becomes more electronegative, acid strength increases
 - ii. For the same central atom, acid strength increases as the number of oxygen atoms increases KNOW THIS
 - 1. Electron density is pulled away from the OH bond, making the bond more polar
- d. Carboxylic acids
 - i. Resonance structures for the conjugate base help to stabilize it
- 11. Lewis acids and bases—broadest theory of the 3 Know this whole section!
 - a. Lewis acid = electron pair acceptor
 - i. Lewis acids have an empty valence orbital
 - ii. Many cations can act as Lewis acids
 - b. Lewis base = electron pair donor
 - i. Lewis bases have a lone pair of electrons
 - c. Hydrolysis of metal ions
 - i. hydration as a Lewis acid-base reaction
 - 1. As metal cation charge increases, metal ion is more acidic
 - 2. As radius decreases, the metal ion is more acidic

Note: Lewis acid-base theory is also relevant for complex ion reactions