Chapter 10. Gases

10.1 Characteristics of Gases

- All substances have three phases: solid, liquid and gas.
- Substances that are liquids or solids under ordinary conditions may also exist as gases.
- These are often referred to as vapors.
- Many of the properties of gases differ from those of solids and liquids:
- Gases are highly compressible and occupy the full volume of their containers.
- When a gas is subjected to pressure, its volume decreases.
- Gases always form homogeneous mixtures with other gases.
- Gases only occupy a small fraction of the total volume of their containers.
- As a result, each molecule of gas behaves largely as though other molecules were absent.

10.2 Pressure

- Pressure is the force acting on an object per unit area:

$$
P=\frac{F}{A}
$$

Atmospheric Pressure and the Barometer

- The SI unit of force is the newton (N).
- $\quad 1 \mathrm{~N}=1 \mathrm{~kg} \mid \mathrm{m} / \mathrm{s}^{2}$
- The SI unit of pressure is the pascal (Pa).
- $\quad 1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}$
- A related unit is the bar, which is equal to $10^{5} \mathrm{~Pa}$.
- Gravity exerts a force on the Earth's atmosphere.
- A column of air $1 \mathrm{~m}^{2}$ in cross section extending to the upper atmosphere exerts a force of $10^{5} \mathrm{~N}$.
- Thus, the pressure of a $1 \mathrm{~m}^{2}$ column of air extending to the upper atmosphere is 100 kPa . - Atmospheric pressure at sea level is about 100 kPa or 1 bar.
- The actual atmospheric pressure at a specific location depends on the altitude and the weather conditions.
- Atmospheric pressure is measured with a barometer.
- If a tube is completely filled with mercury and then inverted into a container of mercury open to the atmosphere, the mercury will rise 760 mm up the tube.
- Standard atmospheric pressure is the pressure required to support 760 mm of Hg in a column.
- Important non SI units used to express gas pressure include:
- atmospheres (atm)
- millimeters of mercury $(\mathrm{mm} \mathrm{Hg})$ or torr
- $1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}=760$ torr $=1.01325 \times 10^{5} \mathrm{~Pa}=101.325 \mathrm{kPa}$

10.3 The Gas Laws

- The equations that express the relationships among T (temperature), P (pressure), V (volume), and n (number of moles of gas) are known as the gas laws.

The Pressure-Volume Relationship: Boyle's Law

- Weather balloons are used as a practical application of the relationship between pressure and volume of a gas.
- As the weather balloon ascends, the volume increases.
- As the weather balloon gets further from Earth's surface, the atmospheric pressure
decreases.
- Boyle's law: The volume of a fixed quantity of gas, at constant temperature, is inversely proportional to its pressure.
- Mathematically:

$$
V=\text { constant } \times \frac{1}{P} \text { or } P V=\text { constant }
$$

- A plot of V versus P is a hyperbola.

$$
V=\text { constant } \times T \text { or } \frac{V}{T}=\mathrm{constant}
$$

- A plot of V versus $1 / P$ must be a straight line passing through the origin.
- The working of the lungs illustrates that:
- as we breathe in, the diaphragm moves down, and the ribs expand; therefore, the volume of the lungs increases.
- according to Boyle's law, when the volume of the lungs increases, the pressure decreases; therefore, the pressure inside the lungs is less than the atmospheric pressure.
- atmospheric pressure forces air into the lungs until the pressure once again equals atmospheric pressure.
- as we breathe out, the diaphragm moves up and the ribs contract; therefore, the volume of the lungs decreases.
- By Boyle's law, the pressure increases and air is forced out.

The Temperature-Volume Relationship: Charles's Law

- We know that hot-air balloons expand when they are heated.
- Charles's law: The volume of a fixed quantity of gas at constant pressure is directly proportional to its absolute temperature.
- Mathematically:
- Note that the value of the constant depends on the pressure and the number of moles of
gas.
- A plot of V versus T is a straight line.
- When T is measured in $\square \mathrm{C}$, the intercept on the temperature axis is $-273.15 \square \mathrm{C}$.
- We define absolute zero, $0 \mathrm{~K}=-273.15 \square \mathrm{C}$.

The Quantity-Volume Relationship: Avogadro's Law

- Gay-Lussac's law of combining volumes: At a given temperature and pressure the volumes of gases that react with one another are ratios of small whole numbers.
- Avogadro's hypothesis: Equal volumes of gases at the same temperature and pressure contain the same number of molecules.
- Avogadro's law: The volume of gas at a given temperature and pressure is directly proportional to the number of moles of gas.
- Mathematically:

$$
V=\text { constant } \mathrm{x} n
$$

- We can show that 22.4 L of any gas at $0 \square \mathrm{C}$ and 1 atmosphere contains 6.02×10^{23} gas molecules.

10.4 The Ideal-Gas Equation

- Summarizing the gas laws:
- Boyle: $V\lceil 1 / P($ constant $n, T)$
- Charles: $V\lceil T$ (constant n, P)
- Avogadro: $\quad V\lceil n$ (constant $P, T)$
- Combined: $V\lceil n T / P$
- Ideal gas equation: $P V=n R T$
- An ideal gas is a hypothetical gas whose P, V, and T behavior is completely described by the ideal-gas equation.
- $\quad R=$ gas constant $=0.08206 \mathrm{~L}|\mathrm{~atm} / \mathrm{mol}| \mathrm{K}$
- Other numerical values of R in various units are given in Table 10.2.
- Define STP (standard temperature and pressure) $=0 \square \mathrm{C}, 273.15 \mathrm{~K}, 1 \mathrm{~atm}$.
- The molar volume of 1 mol of an ideal gas at STP is 22.41 L .

Relating the Ideal-Gas Equation and the Gas Laws

- If $P V=n R T$ and n and T are constant, then $P V$ is constant and we have Boyle's law.
- Other laws can be generated similarly.
- In general, if we have a gas under two sets of conditions, then

$$
\frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}}
$$

- We often have a situation in which P, V, and T all change for a fixed number of moles of gas.
- For this set of circumstances,

$$
\frac{P V}{T}=n R=\mathrm{constant}
$$

- Which gives

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

10.5 Further Applications of the Ideal-Gas Equation

Gas Densities and Molar Mass

- Density has units of mass over volume.
- \quad Rearranging the ideal-gas equation with M as molar mass we get

$$
\begin{aligned}
& \frac{n}{V}=\frac{P}{R T} \\
& \frac{n M}{V}=\frac{P M}{R T} \\
& \therefore d=\frac{P M}{R T}
\end{aligned}
$$

- The molar mass of a gas can be determined as follows:

$$
M=\frac{d R T}{P}
$$

Volumes of Gases in Chemical Reactions

- \quad The ideal-gas equation relates P, V, and T to number of moles of gas.
- The n can then be used in stoichiometric calculations.

10.6 Gas Mixtures and Partial Pressures

- Since gas molecules are so far apart, we can assume that they behave independently.
- Dalton observed:
- The total pressure of a mixture of gases equals the sum of the pressures that each would exert if present alone.
- Partial pressure is the pressure exerted by a particular component of a gas mixture.
- Dalton's law of partial pressures: In a gas mixture the total pressure is given by the sum of partial pressures of each component:

$$
P_{\mathrm{t}}=P_{1}+P_{2}+P_{3}+\ldots
$$

- Each gas obeys the ideal gas equation.
- Thus,

$$
P_{t}=\left(n_{1}+n_{2}+n_{3}+\cdots\right) \frac{R T}{V}=n_{t} \frac{R T}{V}
$$

Partial Pressures and Mole Fractions

- Let n_{1} be the number of moles of gas 1 exerting a partial pressure P_{1}, then

$$
P_{1}=X_{1} P_{\mathrm{t}}
$$

- where X_{1} is the mole fraction $\left(n_{1} / n_{\mathrm{t}}\right)$.
- Note that a mole fraction is a dimensionless number.

Collecting Gases over Water ${ }^{1}$

- It is common to synthesize gases and collect them by displacing a volume of water.
- To calculate the amount of gas produced, we need to correct for the partial pressure of the water:

$$
P_{\text {total }}=P_{\mathrm{gas}}+P_{\text {water }}
$$

- The vapor pressure of water varies with temperature.
- Values can be found in Appendix B.

10.7 Kinetic-Molecular Theory

- The kinetic-molecular theory was developed to explain gas behavior.
- It is a theory of moving molecules.
- Summary:
- Gases consist of a large number of molecules in constant random motion.
- The combined volume of all the molecules is negligible compared with the volume of the container.
- Intermolecular forces (forces between gas molecules) are negligible.
- Energy can be transferred between molecules during collisions, but the average kinetic energy is constant at constant temperature.
- The collisions are perfectly elastic.
- The average kinetic energy of the gas molecules is proportional to the absolute
temperature.
- Kinetic molecular theory gives us an understanding of pressure and temperature on the molecular level.
- The pressure of a gas results from the collisions with the walls of the container.
- The magnitude of the pressure is determined by how often and how hard the molecules strike.
- The absolute temperature of a gas is a measure of the average kinetic energy.
- Some molecules will have less kinetic energy or more kinetic energy than the average (distribution).
- There is a spread of individual energies of gas molecules in any sample of gas.
- As the temperature increases, the average kinetic energy of the gas molecules increases.
- As kinetic energy increases, the velocity of the gas molecules increases.
- Root-mean-square (rms) speed, u, is the speed of a gas molecule having average kinetic energy.
- Average kinetic energy, ε, is related to rms speed:

$$
\varepsilon=1 / 2 m u^{2}
$$

- where $m=$ mass of the molecule.

Application to the Gas-Laws

- We can understand empirical observations of gas properties within the framework of the kineticmolecular theory.
- The effect of an increase in volume (at constant temperature) is as follows:
- As volume increases at constant temperature, the average kinetic energy of the gas remains constant.
- Therefore, u is constant.
- However, volume increases, so the gas molecules have to travel further to hit the walls of the container.
- Therefore, pressure decreases.
- The effect of an increase in temperature (at constant volume) is as follows:
- If temperature increases at constant volume, the average kinetic energy of the gas molecules increases.
- There are more collisions with the container walls.
- Therefore, u increases.
- The change in momentum in each collision increases (molecules strike harder).
- Therefore, pressure increases.

10.8 Molecular Effusion and Diffusion

- The average kinetic energy of a gas is related to its mass:

$$
\varnothing=1 / 2 m \in^{2}
$$

- Consider two gases at the same temperature: the lighter gas has a higher rms speed than the heavier gas.
- Mathematically:

$$
u=\sqrt{\frac{3 R T}{M}}
$$

- The lower the molar mass, M, the higher the rms speed for that gas at a constant
temperature.
- Two consequences of the dependence of molecular speeds on mass are:
- Effusion is the escape of gas molecules through a tiny hole into an evacuated space.
- Diffusion is the spread of one substance throughout a space or throughout a second substance.

Graham's Law of Effusion

- The rate of effusion can be quantified.

- Consider two gases with molar masses, M_{1} and M_{2}, and with effusion rates, r_{1} and r_{2}, respectively.
- The relative rate of effusion is given by Graham's law:

$$
\frac{r_{1}}{r_{2}}=\sqrt{\frac{M_{2}}{M_{1}}}
$$

- Only those molecules which hit the small hole will escape through it.
hole.
- We can show

$$
\frac{r_{1}}{r_{2}}=\frac{u_{1}}{u_{2}}=\sqrt{\frac{M_{2}}{M_{1}}}
$$

Diffusion and Mean Free Path

- Diffusion is faster for light gas molecules.
- Diffusion is significantly slower than the rms speed.
- Diffusion is slowed by collisions of gas molecules with one another.
- Consider someone opening a perfume bottle: It takes awhile to detect the odor, but the average speed of the molecules at $25 \square \mathrm{C}$ is about $515 \mathrm{~m} / \mathrm{s}(1150 \mathrm{mi} / \mathrm{hr})$.
- The average distance traveled by a gas molecule between collisions is called the mean free path.
- At sea level, the mean free path for air molecules is about $6 \times 10^{-6} \mathrm{~cm}$.

10.9 Real Gases: Deviations from Ideal Behavior

- From the ideal gas equation:

$$
\frac{P V}{R T}=n
$$

- For 1 mol of an ideal gas, $P V / R T=1$ for all pressures.
- In a real gas, $P V / R T$ varies from 1 significantly.
- The higher the pressure the more the deviation from ideal behavior.
- For 1 mol of an ideal gas, $P V / R T=1$ for all temperatures.
- As temperature increases, the gases behave more ideally.
- The assumptions in the kinetic-molecular theory show where ideal gas behavior breaks down:
- The molecules of a gas have finite volume.
- Molecules of a gas do attract each other.
- As the pressure on a gas increases, the molecules are forced closer together.
- As the molecules get closer together, the free space in which the molecules can move gets smaller.
- The smaller the container, the more of the total space the gas molecules occupy.
- Therefore, the higher the pressure, the less the gas resembles an ideal gas.
- As the gas molecules get closer together, the intermolecular distances decrease.
- The smaller the distance between gas molecules, the more likely that attractive forces will develop between the molecules.
- Therefore, the less the gas resembles an ideal gas.
- As temperature increases, the gas molecules move faster and further apart.
- Also, higher temperatures mean more energy is available to break intermolecular forces.
- As temperature increases, the negative departure from ideal-gas behavior disappears.

The van der Waals Equation

- We add two terms to the ideal gas equation to correct for
- the volume of $(V-n b)$ molecules:
- for molecular attractions:

$$
\left(\frac{n^{2} a}{V^{2}}\right)
$$

- The correction terms generate the van der Waals equation:
- where a and b are empirical constants that differ for each gas.

$$
\left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T
$$

- van der Waals constants for some common gases can be found in Table 10.3.
- To understand the effect of intermolecular forces on pressure, consider a molecule that is about to strike the wall of the container.
- The striking molecule is attracted by neighboring molecules.
- Therefore, the impact on the wall is lessened.

