Chapter 9. Molecular Geometry and Bonding Theories

Lecture Outline

9.1 Molecular Shapes

- Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms.
- The shape of a molecule is determined by its **bond angles**.
 - The angles made by the lines joining the nuclei of the atoms in a molecule are the bond angles.
- Consider CCl₄:
 - Experimentally we find all Cl–C–Cl bond angles are 109.5.
 - Therefore, the molecule cannot be planar.
 - All Cl atoms are located at the vertices of a tetrahedron with the C at its center.
- In order to predict molecular shape, we assume that the valence electrons repel each other.
 - Therefore, the molecule adopts the three-dimensional geometry that minimizes this repulsion.
 - We call this model the Valence Shell Electron Pair Repulsion (VSEPR) model.

9.2 The VSEPR Model

- A covalent bond forms between two atoms when a pair of electrons occupies the space between the atoms.
 - This is a **bonding pair** of electrons.
 - Such a region is an **electron domain**.
- A **nonbonding pair** or *lone pair* of electrons defines an electron domain located principally on one atom.
- Example: NH₃ has three bonding pairs and one lone pair.
- VSEPR predicts that the best arrangement of electron domains is the one that minimizes the repulsions among them.
 - The arrangement of electron domains about the central atom of an AB_n molecule is its **electron-domain geometry**.
 - There are five different electron-domain geometries:
 - linear (two electron domains), trigonal planar (three domains), tetrahedral (four domains), trigonal bipyramidal (five domains) and octahedral (six domains).
 - The molecular geometry is the arrangement of the atoms in space.
 - To determine the shape of a molecule we must distinguish between lone pairs and bonding pairs.
 - We use the electron-domain geometry to help us predict the molecular geometry.
 - Draw the Lewis structure.
 - Count the total number of electron domains around the central atom.
 - Arrange the electron domains in one of the above geometries to minimize electron-electron repulsion.
 - Next, determine the three-dimensional structure of the molecule.
 - We ignore lone pairs in the molecular geometry.
 - Describe the molecular geometry in terms of the angular arrangement of the bonded atoms.
 - Multiple bonds are counted as one electron domain.

The Effect of Nonbonding Electrons and Multiple Bonds on Bond Angles

- We refine VSEPR to predict and explain slight distortions from "ideal" geometries.
- Consider three molecules with tetrahedral electron domain geometries:
 - CH_4 , NH_3 , and H_2O .

Molecular Geometry and Bonding Theories

- By experiment, the H–X–H bond angle decreases from C (109.5 \square in CH₄) to N (107 \square in NH₃) to O (104.5 \square in H₂O).
- A bonding pair of electrons is attracted by two nuclei. They do not repel as much as lone pairs which are primarily attracted by only one nucleus.
- Electron domains for nonbonding electron pairs thus exert greater repulsive forces on adjacent electron domains.
 - They tend to compress the bond angles.
 - The bond angle decreases as the number of nonbonding pairs increases.
- Similarly, electrons in multiple bonds repel more than electrons in single bonds (e.g., in Cl₂CO the O–C–Cl angle is 124.3 \Box , and the Cl–C–Cl bond angle is 111.4 \Box).
- We will encounter eleven basic molecular shapes:
 - three atoms (AB₂):
 - linear
 - bent
 - four atoms (AB₃):
 - trigonal planar
 - trigonal pyramidal
 - t-shaped
 - five atoms (AB₄):
 - tetrahedral
 - square planar
 - seesaw
 - six atoms (AB₅):
 - trigonal bipyramidal
 - square pyramidal
 - seven atoms (AB_6) :
 - octahedral

Molecules with Expanded Valence Shells

- Atoms that have expanded octets have five electron domains (trigonal bipyramidal) or six electron domains (octahedral) electron-domain geometries.
 - Trigonal bipyramidal structures have a plane containing three electron pairs.
 - The fourth and fifth electron pairs are located above and below this plane.
 - In this structure two trigonal pyramids share a base.
 - For octahedral structures, there is a plane containing four electron pairs.
 - Similarly, the fifth and sixth electron pairs are located above and below this plane.
 - Two square pyramids share a base.
- Consider a trigonal bipyramid.
 - The three electron pairs in the plane are called *equatorial*.
 - The two electron pairs above and below this plane are called *axial*.
 - The axial electron pairs are $180\square$ apart and $90\square$ to the equatorial electrons.
 - The equatorial electron pairs are $120\Box$ apart.
 - To minimize electron–electron repulsion, nonbonding pairs are always placed in equatorial positions and bonding pairs are placed in either axial or equatorial positions.
- Consider an octahedron.
 - The four electron pairs in the plane are at $90\Box$ to each other.
 - The two axial electron pairs are $180\square$ apart and at $90\square$ to the electrons in the plane.
 - Because of the symmetry of the system, each position is equivalent.
 - If we have five bonding pairs and one lone pair, it does not matter where the lone pair is placed.
 - The molecular geometry is square pyramidal.
 - If two non-bonding pairs are present, the repulsions are minimized by pointing them toward opposite sides of the octahedron.

•

Molecular Geometry and Bonding Theories 3

• The molecular geometry is square planar.

Shapes of Larger Molecules

- In acetic acid, CH₃COOH, there are three interior atoms: two C and one O.
- We assign the molecular (and electron-domain) geometry about each interior atom separately:
 - The geometry around the first C is tetrahedral.
 - The geometry around the second C is trigonal planar.
 - The geometry around the O is bent (tetrahedral).

9.3 Molecular Shape and Molecular Polarity

- Polar molecules interact with electric fields.
- We previously saw that binary compounds are polar if their centers of negative and positive charge do not coincide.
 - If two charges, equal in magnitude and opposite in sign, are separated by a distance *d*, then a *dipole* is established.
 - The dipole moment, ϵ is given by

$$\epsilon = Qr$$

- where Q is the magnitude of the charge.
- We can extend this to polyatomic molecules.
 - For each bond in a polyatomic molecule, we can consider the **bond dipole**.
 - The dipole moment due only to the two atoms in the bond is the bond dipole.
 - Because bond dipoles and dipole moments are *vector quantities*, the orientation of these individual dipole moments determines whether the molecule has an overall dipole moment.
 - Examples:
 - In CO₂ each $^{\oplus_+}$ C–O $^{\oplus_-}$ dipole is canceled because the molecule is linear.
 - In H₂O, the $^{\oplus_+}$ H–O $^{\oplus_-}$ dipoles do not cancel because the molecule is bent.
- It is possible for a molecule with polar bonds to be either polar or nonpolar.
 - Example:

•

- For diatomic molecules:
- polar bonds always result in an overall dipole moment.
- For triatomic molecules:
 - if the molecular geometry is bent, there is an overall dipole moment.
 - if the molecular geometry is linear and the B atoms are the same, there is no overall dipole moment.
 - if the molecular geometry is linear and the B atoms are different, there is an overall dipole moment.
- For molecules with four atoms:
 - if the molecular geometry is trigonal pyramidal, there is an overall dipole moment.
 - if the molecular geometry is trigonal planar and the B atoms are identical, there is no overall dipole moment.
 - if the molecular geometry is trigonal planar and the B atoms are different, there is an overall dipole moment.

9.4 Covalent Bonding and Orbital Overlap

- Lewis structures and VSEPR theory give us the shape and location of electrons in a molecule.
- They do not explain why a chemical bond forms.
- How can quantum mechanics be used to account for molecular shape? What are the orbitals that are involved in bonding?
- We use valence-bond theory.
 - A covalent bond forms when the orbitals on two atoms **overlap**.
 - The shared region of space between the orbitals is called the orbital overlap.

•

Molecular Geometry and Bonding Theories

- There are two electrons (usually one from each atom) of opposite spin in the orbital overlap.
- As two nuclei approach each other their atomic orbitals overlap.
- As the amount of overlap increases, the energy of the interaction decreases.
 - At some distance the minimum energy is reached.
 - The minimum energy corresponds to the bonding distance (or bond length).
- As the two atoms get closer, their nuclei begin to repel and the energy increases.
- At the bonding distance, the attractive forces between nuclei and electrons just balance the repulsive forces (nucleus-nucleus, electron-electron).

9.5 Hybrid Orbitals

• We can apply the idea of orbital overlap and valence-bond theory to polyatomic molecules.

sp Hybrid Orbitals

- Consider the BeF₂ molecule.
 - Be has a $1s^2 2s^2$ electron configuration.
 - There is no unpaired electron available for bonding.
 - We conclude that the atomic orbitals are not adequate to describe orbitals in molecules.
- We know that the F–Be–F bond angle is $180\Box$ (VSEPR theory).
- We also know that one electron from Be is shared with each one of the unpaired electrons from F.
- We assume that the Be orbitals in the Be–F bond are $180\Box$ apart.
- We could promote an electron from the 2s orbital on Be to the 2p orbital to get two unpaired electrons for bonding.
 - BUT the geometry is still not explained.
- We can solve the problem by allowing the 2s and one 2p orbital on Be to mix or form two new **hybrid orbitals** (a process called **hybridization**).
 - The two equivalent hybrid orbitals that result from mixing an *s* and a *p* orbital and are called *sp* hybrid orbitals.
 - The two lobes of an *sp* hybrid orbital are $180\square$ apart.
 - According to the valence-bond model, a linear arrangement of electron domains implies *sp* hybridization.
 - Since only one of 2*p* orbitals of Be has been used in hybridization, there are two unhybridized *p* orbitals remaining on Be.
 - The electrons in the *sp* hybrid orbital form shared electron bonds with the two fluorine atoms.

sp^2 and sp^3 Hybrid Orbitals

- Important: when we mix *n* atomic orbitals we must get *n* hybrid orbitals.
- Three sp^2 hybrid orbitals are formed from hybridization of one s and two p orbitals.
 - Thus, there is one unhybridized *p* orbital remaining.
 - The large lobes of the sp^2 hybrids lie in a trigonal plane.
 - Molecules with trigonal planar electron-pair geometries have sp^2 orbitals on the central atom.
- Four sp^3 hybrid orbitals are formed from hybridization of one s and three p orbitals.
 - Therefore, there are four large lobes.
 - Each lobe points towards the vertex of a tetrahedron.
 - The angle between the large lobes is $109.5\Box$.
 - Molecules with tetrahedral electron pair geometries are sp^3 hybridized.

Hybridization Involving *d* Orbitals

- Since there are only three *p* orbitals, trigonal bipyramidal and octahedral electron-pair geometries must involve *d* orbitals.
- Trigonal bipyramidal electron pair geometries require sp^3d hybridization.
- Octahedral electron pair geometries require sp^3d^2 hybridization.
- Note that the electron pair VSEPR geometry corresponds well with the hybridization.

Molecular Geometry and Bonding Theories 5

• Use of *d* orbitals in making hybrid orbitals corresponds well with the idea of an expanded octet.

Summary

- We need to know the electron-domain geometry before we can assign hybridization.
- To assign hybridization:
 - Draw a Lewis structure.
 - Assign the electron-domain geometry using VSEPR theory.
 - Specify the hybridization required to accommodate the electron pairs based on their geometric arrangement.
 - Name the geometry by the positions of the atoms.

9.6 Multiple Bonds

- In the covalent bonds we have seen so far the electron density has been concentrated symmetrically about the *internuclear axis*.
- Sigma (TM) bonds: electron density lies on the axis between the nuclei.
 - All single bonds are [™] bonds.
- What about overlap in multiple bonds?
 - **Pi** (∇) bonds: electron density lies above and below the plane of the nuclei.
 - A double bond consists of one TM bond and one ∇ bond.
 - A triple bond has one TM bond and two ∇ bonds.
- Often, the p orbitals involved in ∇ bonding come from unhybridized orbitals.
- For example: ethylene, C_2H_4 , has:
 - One TM and one ∇ bond.
 - Both C atoms are sp^2 hybridized.
 - Both C atoms have trigonal planar electron-pair and molecular geometries.
- For example: acetylene, C₂H₂:
 - The electron-domain geometry of each C is linear.
 - Therefore, the C atoms are *sp* hybridized.
 - The *sp* hybrid orbitals form the C–C and C–H TM bonds.
 - There are *two* unhybridized *p* orbitals on each C atom.
 - *Both* unhybridized *p* orbitals form the *two* ∇ bonds;
 - One ∇ bond is above and below the plane of the nuclei;
 - One ∇ bond is in front and behind the plane of the nuclei.
- When triple bonds form (e.g., N_2), one ∇ bond is always above and below and the other is in front and behind the plane of the nuclei.

Delocalized ∇ **Bonding**

- So far all the bonds we have encountered are localized between two nuclei.
- In the case of benzene:
 - There are six C–C $^{\text{TM}}$ bonds and six C–H $^{\text{TM}}$ bonds.
 - Each C atom is sp^2 hybridized.
 - There is one unhybridized p orbital on each carbon atom, resulting in six unhybridized carbon p orbitals in a ring.
 - In benzene there are two options for the three ∇ bonds:
 - localized between carbon atoms or
 - **delocalized** over the entire ring (i.e., the ∇ electrons are shared by all six carbon atoms).
- Experimentally, all C–C bonds are the same length in benzene.
 - Therefore, all C–C bonds are of the same type (recall single bonds are longer than double bonds).

General Conclusions

- Every pair of bonded atoms shares one or more pairs of electrons.
- Two electrons shared between atoms on the same axis as the nuclei are TM bonds.

- Molecular Geometry and Bonding Theories
- TM bonds are always localized in the region between two bonded atoms.
- If two atoms share more than one pair of electrons, the additional pairs form ∇ bonds.
- When resonance structures are possible, delocalization is also possible.

9.7 Molecular Orbitals

- Some aspects of bonding are not explained by Lewis structures, VSEPR theory, and hybridization.
 - For example:
 - Why does O₂ interact with a magnetic field?
 - Why are some molecules colored?
- For these molecules, we use **molecular orbital** (MO) **theory**.
- Just as electrons in atoms are found in atomic orbitals, electrons in molecules are found in **molecular orbitals**.
- Molecular orbitals:
 - Some characteristics are similar to those of atomic orbitals.
 - Each contains a maximum of two electrons with opposite spins.
 - Each has a definite energy.
 - Electron density distribution can be visualized with contour diagrams.
 - However, unlike atomic orbitals, molecular orbitals are associated with an entire molecule.

The Hydrogen Molecule

- When two AOs overlap, two MOs form.
- Therefore, 1s(H) + 1s(H) must result in two MOs for H₂.
 - One has electron density between the nuclei (**bonding MO**).
 - One has little electron density between the nuclei (antibonding MO).
- Sigma ([™]) MOs have electron density in both molecular orbitals centered about the internuclear axis.
- The TM bonding MO is lower in energy than the ^{TM*} (antibonding) MO.
- The energy level diagram, or MO diagram, shows the energies of the orbitals in a molecule.
 - The total number of electrons in all atoms are placed in the MOs starting from lowest energy $(^{TM}_{1s})$ and ending when all electrons have been accommodated.
 - Note that electrons in MOs have opposite spins.

Bond Order

- **Bond order** = $\frac{1}{2}$ (bonding electrons antibonding electrons).
 - Bond order = 1 for a single bond.
 - Bond order = 2 for a double bond.
 - Bond order = 3 for a triple bond.
 - Fractional bond orders are possible.
- For example, consider the molecule H_2 .
 - H₂ has two bonding electrons.
 - Bond order for H_2 is:

$\frac{1}{2}$ (bonding electrons - antibonding electrons) = $\frac{1}{2}(2-0) = 1$

- Therefore, H_2 has a single bond.
- For example, consider the species He₂.
 - He₂ has two bonding electrons and two antibonding electrons.
 - Bond order for He₂ is:

 $\frac{1}{2}$ (bonding electrons – antibonding electrons) = $\frac{1}{2}(2-2) = 0$.

- Therefore, He_2 is *not* a stable molecule.
- MO theory correctly predicts that hydrogen forms a diatomic molecule but that helium does not!

9.8 Second-Row Diatomic Molecules

- We look at homonuclear diatomic molecules (e.g., Li₂, Be₂, B₂ etc.).
- AOs combine according to the following rules:

Molecular Geometry and Bonding Theories 7

- The number of MOs = number of AOs.
- AOs of similar energy combine (e.g., 1s + 1s rather than 1s + 2s).
- As overlap increases, the energy of the bonding MO decreases and the energy of the antibonding MO increases.
- Pauli: each MO has at most two electrons, with spins paired.
- Hund: for degenerate orbitals, each MO is first occupied singly before spin pairing occurs.

Molecular Orbitals for Li₂ and Be₂

- Each 1s orbital combines with another 1s orbital to give one ${}^{\text{TM}}_{1s}$ and one ${}^{\text{TM}}_{1s}$ orbital, both of which are occupied (since Li and Be have $1s^2$ electron configurations).
- Each 2s orbital combines with another 2s orbital give one TM_{2s} and one TM_{2s}^* orbital.
- The energies of the 1s and 2s orbitals are sufficiently different so that there is no cross mixing of orbitals (i.e., we do not get 1s + 2s).
- Consider the bonding in Li₂.
 - There are a total of six electrons in Li_2 .
 - two electrons in TM_{1s} .
 - two electrons in TM_{1s}^* .
 - two electrons in $^{TM}_{2s}$.
 - zero electrons in ${}^{TM^*}_{2s}$.
 - Therefore the bond order is $\frac{1}{2}(4-2) = 1$.
- Since the 1s AOs are completely filled, the ${}^{TM}{}_{1s}$ and ${}^{TM}{}^{*}{}_{1s}$ are filled.
 - We generally ignore core electrons in MO diagrams.
 - Core electrons usually do not contribute significantly to bonding in molecule formation.
- Consider bonding in Be₂.
 - There are a total of eight electrons in Be₂.
 - two electrons in TM _{1s}.
 - two electrons in ${}^{\text{TM}^*}_{1\text{s}}$.
 - two electrons in TM_{2s} .
 - two electrons in ${}^{TM}{}^*_{2s}$.
 - Therefore the bond order is $\frac{1}{2}(4-4) = 0$.
 - Be_2 does not exist.

Molecular Orbitals from 2p Atomic Orbitals

- There are two ways in which two *p* orbitals can overlap:
 - end on so that the resulting MO has electron density on the axis between nuclei (i.e., [™] type orbital).
 - Sideways, so that the resulting MO has electron density above and below the axis between nuclei.
 These are called **pi** (∇) **molecular orbitals**.
 - The six *p*-orbitals (two sets of three) must give rise to six MOs:
 - $^{\text{TM}}, ^{\text{TM}*}, \nabla, \nabla^*, \nabla \text{ and } \nabla^*.$
 - Therefore, there are a maximum of two ∇ bonds which can come from p orbitals.
 - The relative energies of these six orbitals can change.

Electron Configurations for B₂ Through Ne₂

- Features of the energy-level diagrams for these elements are:
 - 2s orbitals are lower in energy than 2p orbitals so both ${}^{TM}_{2s}$ orbitals (${}^{TM}_{2s}$ and ${}^{TM}_{2s}$) are lower in energy than the lowest energy MO derived from the 2p AOs.
 - There is greater overlap between $2p_z$ orbitals.
 - They point directly towards one another, so the ${}^{TM}_{2p}$ MO is lower in energy than the ∇_{2p} orbitals.
 - The ${}^{\text{TM}*}_{2p}$ MO is higher in energy than the ∇^*_{2p} orbitals.
 - The ∇_{2p} and ∇^{*}_{2p} orbitals are doubly degenerate.

Molecular Geometry and Bonding Theories

- As the atomic number decreases, it becomes more likely that a 2s orbital on one atom can interact with the 2p orbital on the other.
- As the 2s-2p interaction increases, the ${}^{TM}_{2s}$ MO lowers in energy and the ${}^{TM}_{2p}$ orbital increases in energy.

 - For B₂, C₂, and N₂ the ${}^{TM}{}_{2p}$ orbital is higher in energy than the ∇_{2p} . For O₂, F₂, and Ne₂ the ${}^{TM}{}_{2p}$ orbital is lower in energy than the ∇_{2p} .
- Once we know the relative orbital energies, we add the required number of electrons to the MOs, taking into account Pauli's exclusion principle and Hund's rule.
- As bond order increases,
 - bond length decreases.
 - bond energy increases.

Electron Configurations and Molecular Properties

- Two types of magnetic behavior are:
 - paramagnetism (unpaired electrons in molecule)
 - strong attraction between magnetic field and molecule
 - diamagnetism (no unpaired electrons in molecule)
 - weak repulsion between magnetic field and molecule
- Magnetic behavior is detected by determining the mass of a sample in the presence and absence of a magnetic field.
 - A large increase in mass indicates paramagnetism.
 - A small decrease in mass indicates diamagnetism.
- Experimentally, O_2 is paramagnetic.
 - The Lewis structure for O₂ shows no unpaired electrons.
 - The MO diagram for O₂ shows two unpaired electrons in the ∇^*_{2p} orbital.
 - Experimentally, O_2 has a short bond length (1.21 Å) and high bond dissociation energy (495 kJ/mol).
 - This suggests a double bond.
 - The MO diagram for O_2 predicts both paramagnetism and the double bond (bond order = 2).

Heteronuclear Diatomic Molecules

- Heteronuclear diatomic molecules contain two different elements.
- If both atoms do not differ greatly in electronegativity, the description of their MOs will be similar to those for homonuclear diatomic molecules.