Chapter 9. Molecular Geometry and Bonding Theories

Lecture Outline

9.1 Molecular Shapes

- Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms.
- The shape of a molecule is determined by its bond angles.
- The angles made by the lines joining the nuclei of the atoms in a molecule are the bond angles.
- Consider CCl_{4} :
- Experimentally we find all $\mathrm{Cl}-\mathrm{C}-\mathrm{Cl}$ bond angles are $109.5 \square$.
- Therefore, the molecule cannot be planar.
- All Cl atoms are located at the vertices of a tetrahedron with the C at its center.
- In order to predict molecular shape, we assume that the valence electrons repel each other.
- Therefore, the molecule adopts the three-dimensional geometry that minimizes this repulsion.
- We call this model the Valence Shell Electron Pair Repulsion (VSEPR) model.

9.2 The VSEPR Model

- A covalent bond forms between two atoms when a pair of electrons occupies the space between the atoms.
- This is a bonding pair of electrons.
- Such a region is an electron domain.
- A nonbonding pair or lone pair of electrons defines an electron domain located principally on one atom.
- Example: NH_{3} has three bonding pairs and one lone pair.
- VSEPR predicts that the best arrangement of electron domains is the one that minimizes the repulsions among them.
- The arrangement of electron domains about the central atom of an AB_{n} molecule is its electrondomain geometry.
- There are five different electron-domain geometries:
- linear (two electron domains), trigonal planar (three domains), tetrahedral (four domains), trigonal bipyramidal (five domains) and octahedral (six domains).
- The molecular geometry is the arrangement of the atoms in space.
- To determine the shape of a molecule we must distinguish between lone pairs and bonding pairs.
- We use the electron-domain geometry to help us predict the molecular geometry.
- Draw the Lewis structure.
- Count the total number of electron domains around the central atom.
- Arrange the electron domains in one of the above geometries to minimize electron-electron repulsion.
- Next, determine the three-dimensional structure of the molecule.
- We ignore lone pairs in the molecular geometry.
- Describe the molecular geometry in terms of the angular arrangement of the bonded atoms.
- Multiple bonds are counted as one electron domain.

The Effect of Nonbonding Electrons and Multiple Bonds on Bond Angles

- We refine VSEPR to predict and explain slight distortions from "ideal" geometries.
- Consider three molecules with tetrahedral electron domain geometries:
- $\mathrm{CH}_{4}, \mathrm{NH}_{3}$, and $\mathrm{H}_{2} \mathrm{O}$.
- By experiment, the $\mathrm{H}-\mathrm{X}-\mathrm{H}$ bond angle decreases from $\mathrm{C}\left(109.5 \square\right.$ in $\left.\mathrm{CH}_{4}\right)$ to $\mathrm{N}\left(107 \square\right.$ in $\left.\mathrm{NH}_{3}\right)$ to $\mathrm{O}\left(104.5 \square\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$.
- A bonding pair of electrons is attracted by two nuclei. They do not repel as much as lone pairs which are primarily attracted by only one nucleus.
- Electron domains for nonbonding electron pairs thus exert greater repulsive forces on adjacent electron domains.
- They tend to compress the bond angles.
- The bond angle decreases as the number of nonbonding pairs increases.
- Similarly, electrons in multiple bonds repel more than electrons in single bonds (e.g., in $\mathrm{Cl}_{2} \mathrm{CO}$ the $\mathrm{O}-\mathrm{C}-\mathrm{Cl}$ angle is $124.3 \square$, and the $\mathrm{Cl}-\mathrm{C}-\mathrm{Cl}$ bond angle is $111.4 \square$).
- We will encounter eleven basic molecular shapes:
- three atoms $\left(\mathrm{AB}_{2}\right)$:
- linear
- bent
- four atoms $\left(\mathrm{AB}_{3}\right)$:
- trigonal planar
- trigonal pyramidal
- t-shaped
- five atoms $\left(\mathrm{AB}_{4}\right)$:
- tetrahedral
- square planar
- seesaw
- six atoms $\left(\mathrm{AB}_{5}\right)$:
- trigonal bipyramidal
- square pyramidal
- seven atoms $\left(\mathrm{AB}_{6}\right)$:
- octahedral

Molecules with Expanded Valence Shells

- Atoms that have expanded octets have five electron domains (trigonal bipyramidal) or six electron domains (octahedral) electron-domain geometries.
- Trigonal bipyramidal structures have a plane containing three electron pairs.
- The fourth and fifth electron pairs are located above and below this plane.
- In this structure two trigonal pyramids share a base.
- For octahedral structures, there is a plane containing four electron pairs.
- Similarly, the fifth and sixth electron pairs are located above and below this plane.
- Two square pyramids share a base.
- Consider a trigonal bipyramid.
- The three electron pairs in the plane are called equatorial.
- The two electron pairs above and below this plane are called axial.
- The axial electron pairs are $180 \square$ apart and $90 \square$ to the equatorial electrons.
- The equatorial electron pairs are $120 \square$ apart.
- To minimize electron-electron repulsion, nonbonding pairs are always placed in equatorial positions and bonding pairs are placed in either axial or equatorial positions.
- Consider an octahedron.
- The four electron pairs in the plane are at $90 \square$ to each other.
- The two axial electron pairs are $180 \square$ apart and at $90 \square$ to the electrons in the plane.
- Because of the symmetry of the system, each position is equivalent.
- If we have five bonding pairs and one lone pair, it does not matter where the lone pair is placed.
- The molecular geometry is square pyramidal.
- If two non-bonding pairs are present, the repulsions are minimized by pointing them toward opposite sides of the octahedron.
- The molecular geometry is square planar.

Shapes of Larger Molecules

- In acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$, there are three interior atoms: two C and one O .
- We assign the molecular (and electron-domain) geometry about each interior atom separately:
- The geometry around the first C is tetrahedral.
- The geometry around the second C is trigonal planar.
- The geometry around the O is bent (tetrahedral).

9.3 Molecular Shape and Molecular Polarity

- Polar molecules interact with electric fields.
- We previously saw that binary compounds are polar if their centers of negative and positive charge do not coincide.
- If two charges, equal in magnitude and opposite in sign, are separated by a distance d, then a dipole is established.
- The dipole moment, \in is given by

$$
\epsilon=Q r
$$

- where Q is the magnitude of the charge.
- We can extend this to polyatomic molecules.
- For each bond in a polyatomic molecule, we can consider the bond dipole.
- The dipole moment due only to the two atoms in the bond is the bond dipole.
- Because bond dipoles and dipole moments are vector quantities, the orientation of these individual dipole moments determines whether the molecule has an overall dipole moment.
- Examples:
- In CO_{2} each ${ }^{\oplus+} \mathrm{C}-\mathrm{O}^{\oplus-}$ dipole is canceled because the molecule is linear.
- In $\mathrm{H}_{2} \mathrm{O}$, the ${ }^{\oplus+} \mathrm{H}-\mathrm{O}^{\oplus-}$ dipoles do not cancel because the molecule is bent.
- It is possible for a molecule with polar bonds to be either polar or nonpolar.
- Example:
- For diatomic molecules:
- polar bonds always result in an overall dipole moment.
- For triatomic molecules:
- if the molecular geometry is bent, there is an overall dipole moment.
- if the molecular geometry is linear and the B atoms are the same, there is no overall dipole moment.
- if the molecular geometry is linear and the B atoms are different, there is an overall dipole moment.
- For molecules with four atoms:
- if the molecular geometry is trigonal pyramidal, there is an overall dipole moment.
- if the molecular geometry is trigonal planar and the B atoms are identical, there is no overall dipole moment.
- if the molecular geometry is trigonal planar and the B atoms are different, there is an overall dipole moment.

9.4 Covalent Bonding and Orbital Overlap

- Lewis structures and VSEPR theory give us the shape and location of electrons in a molecule.
- They do not explain why a chemical bond forms.
- How can quantum mechanics be used to account for molecular shape? What are the orbitals that are involved in bonding?
- We use valence-bond theory.
- A covalent bond forms when the orbitals on two atoms overlap.
- The shared region of space between the orbitals is called the orbital overlap.
- There are two electrons (usually one from each atom) of opposite spin in the orbital overlap.
- As two nuclei approach each other their atomic orbitals overlap.
- As the amount of overlap increases, the energy of the interaction decreases.
- At some distance the minimum energy is reached.
- The minimum energy corresponds to the bonding distance (or bond length).
- As the two atoms get closer, their nuclei begin to repel and the energy increases.
- At the bonding distance, the attractive forces between nuclei and electrons just balance the repulsive forces (nucleus-nucleus, electron-electron).

9.5 Hybrid Orbitals

- We can apply the idea of orbital overlap and valence-bond theory to polyatomic molecules.

sp Hybrid Orbitals

- Consider the BeF_{2} molecule.
- Be has a $1 s^{2} 2 s^{2}$ electron configuration.
- There is no unpaired electron available for bonding.
- We conclude that the atomic orbitals are not adequate to describe orbitals in molecules.
- We know that the $\mathrm{F}-\mathrm{Be}-\mathrm{F}$ bond angle is $180 \square$ (VSEPR theory).
- We also know that one electron from Be is shared with each one of the unpaired electrons from F .
- We assume that the Be orbitals in the Be-F bond are $180 \square$ apart.
- We could promote an electron from the $2 s$ orbital on Be to the $2 p$ orbital to get two unpaired electrons for bonding.
- BUT the geometry is still not explained.
- We can solve the problem by allowing the $2 s$ and one $2 p$ orbital on Be to mix or form two new hybrid orbitals (a process called hybridization).
- The two equivalent hybrid orbitals that result from mixing an s and a p orbital and are called $s p$ hybrid orbitals.
- The two lobes of an $s p$ hybrid orbital are $180 \square$ apart.
- According to the valence-bond model, a linear arrangement of electron domains implies $s p$ hybridization.
- Since only one of $2 p$ orbitals of Be has been used in hybridization, there are two unhybridized p orbitals remaining on Be .
- The electrons in the $s p$ hybrid orbital form shared electron bonds with the two fluorine atoms.

$s p^{2}$ and $s p^{3}$ Hybrid Orbitals

- Important: when we mix n atomic orbitals we must get n hybrid orbitals.
- Three $s p^{2}$ hybrid orbitals are formed from hybridization of one s and two p orbitals.
- Thus, there is one unhybridized p orbital remaining.
- The large lobes of the $s p^{2}$ hybrids lie in a trigonal plane.
- Molecules with trigonal planar electron-pair geometries have $s p^{2}$ orbitals on the central atom.
- Four $s p^{3}$ hybrid orbitals are formed from hybridization of one s and three p orbitals.
- Therefore, there are four large lobes.
- Each lobe points towards the vertex of a tetrahedron.
- The angle between the large lobes is $109.5 \square$.
- Molecules with tetrahedral electron pair geometries are $s p^{3}$ hybridized.

Hybridization Involving \boldsymbol{d} Orbitals

- Since there are only three p orbitals, trigonal bipyramidal and octahedral electron-pair geometries must involve d orbitals.
- Trigonal bipyramidal electron pair geometries require $s p^{3} d$ hybridization.
- Octahedral electron pair geometries require $s p^{3} d^{2}$ hybridization.
- Note that the electron pair VSEPR geometry corresponds well with the hybridization.
- Use of d orbitals in making hybrid orbitals corresponds well with the idea of an expanded octet.

Summary

- We need to know the electron-domain geometry before we can assign hybridization.
- To assign hybridization:
- Draw a Lewis structure.
- Assign the electron-domain geometry using VSEPR theory.
- Specify the hybridization required to accommodate the electron pairs based on their geometric arrangement.
- Name the geometry by the positions of the atoms.

9.6 Multiple Bonds

- In the covalent bonds we have seen so far the electron density has been concentrated symmetrically about the internuclear axis.
- Sigma (${ }^{\mathrm{TM})}$ bonds: electron density lies on the axis between the nuclei.
- All single bonds are ${ }^{\mathrm{TM}}$ bonds.
- What about overlap in multiple bonds?
- $\mathbf{P i}(\nabla)$ bonds: electron density lies above and below the plane of the nuclei.
- A double bond consists of one ${ }^{\mathrm{TM}}$ bond and one ∇ bond.
- A triple bond has one ${ }^{\mathrm{TM}}$ bond and two ∇ bonds.
- Often, the p orbitals involved in ∇ bonding come from unhybridized orbitals.
- For example: ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}$, has:
- One ${ }^{\mathrm{TM}}$ and one ∇ bond.
- Both C atoms are $s p^{2}$ hybridized.
- Both C atoms have trigonal planar electron-pair and molecular geometries.
- For example: acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}$:
- The electron-domain geometry of each C is linear.
- Therefore, the C atoms are $s p$ hybridized.
- The $s p$ hybrid orbitals form the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}^{\mathrm{TM}}$ bonds.
- There are two unhybridized p orbitals on each C atom.
- Both unhybridized p orbitals form the $t w o \nabla$ bonds;
- One ∇ bond is above and below the plane of the nuclei;
- One ∇ bond is in front and behind the plane of the nuclei.
- When triple bonds form (e.g., N_{2}), one ∇ bond is always above and below and the other is in front and behind the plane of the nuclei.

Delocalized ∇ Bonding

- So far all the bonds we have encountered are localized between two nuclei.
- In the case of benzene:
- There are six $\mathrm{C}-\mathrm{C}^{\mathrm{TM}}$ bonds and six $\mathrm{C}-\mathrm{H}^{\mathrm{TM}}$ bonds.
- Each C atom is $s p^{2}$ hybridized.
- There is one unhybridized p orbital on each carbon atom, resulting in six unhybridized carbon p orbitals in a ring.
- In benzene there are two options for the three ∇ bonds:
- localized between carbon atoms or
- delocalized over the entire ring (i.e., the ∇ electrons are shared by all six carbon atoms).
- Experimentally, all $\mathrm{C}-\mathrm{C}$ bonds are the same length in benzene.
- Therefore, all C-C bonds are of the same type (recall single bonds are longer than double bonds).

General Conclusions

- Every pair of bonded atoms shares one or more pairs of electrons.
- Two electrons shared between atoms on the same axis as the nuclei are ${ }^{\mathrm{TM}}$ bonds.
- TM bonds are always localized in the region between two bonded atoms.
- If two atoms share more than one pair of electrons, the additional pairs form ∇ bonds.
- When resonance structures are possible, delocalization is also possible.

9.7 Molecular Orbitals

- Some aspects of bonding are not explained by Lewis structures, VSEPR theory, and hybridization.
- For example:
- Why does O_{2} interact with a magnetic field?
- Why are some molecules colored?
- For these molecules, we use molecular orbital (MO) theory.
- Just as electrons in atoms are found in atomic orbitals, electrons in molecules are found in molecular orbitals.
- Molecular orbitals:
- Some characteristics are similar to those of atomic orbitals.
- Each contains a maximum of two electrons with opposite spins.
- Each has a definite energy.
- Electron density distribution can be visualized with contour diagrams.
- However, unlike atomic orbitals, molecular orbitals are associated with an entire molecule.

The Hydrogen Molecule

- When two AOs overlap, two MOs form.
- Therefore, $1 s(\mathrm{H})+1 s(\mathrm{H})$ must result in two MOs for H_{2}.
- One has electron density between the nuclei (bonding MO).
- One has little electron density between the nuclei (antibonding MO).
- Sigma ($\left.{ }^{(\mathrm{TM}}\right)$ MOs have electron density in both molecular orbitals centered about the internuclear axis.
- The ${ }^{\mathrm{TM}}$ bonding MO is lower in energy than the ${ }^{\mathrm{TM}^{*}}$ (antibonding) MO.
- The energy level diagram, or MO diagram, shows the energies of the orbitals in a molecule.
- The total number of electrons in all atoms are placed in the MOs starting from lowest energy (${ }^{\mathrm{TM}}{ }_{15}$) and ending when all electrons have been accommodated.
- Note that electrons in MOs have opposite spins.

Bond Order

- Bond order $=1 / 2$ (bonding electrons - antibonding electrons).
- Bond order $=1$ for a single bond.
- Bond order $=2$ for a double bond.
- Bond order $=3$ for a triple bond.
- Fractional bond orders are possible.
- For example, consider the molecule H_{2}.
- H_{2} has two bonding electrons.
- Bond order for H_{2} is:

$$
1 / 2(\text { bonding electrons }- \text { antibonding electrons })=1 / 2(2-0)=1
$$

- Therefore, H_{2} has a single bond.
- For example, consider the species He_{2}.
- He_{2} has two bonding electrons and two antibonding electrons.
- Bond order for He_{2} is:

$$
1 / 2(\text { bonding electrons }- \text { antibonding electrons })=1 / 2(2-2)=0 .
$$

- Therefore, He_{2} is not a stable molecule.
- MO theory correctly predicts that hydrogen forms a diatomic molecule but that helium does not!

9.8 Second-Row Diatomic Molecules

- We look at homonuclear diatomic molecules (e.g., $\mathrm{Li}_{2}, \mathrm{Be}_{2}, \mathrm{~B}_{2}$ etc.).
- AOs combine according to the following rules:
- The number of MOs = number of AOs.
- AOs of similar energy combine (e.g., $1 s+1 s$ rather than $1 s+2 s$).
- As overlap increases, the energy of the bonding MO decreases and the energy of the antibonding MO increases.
- Pauli: each MO has at most two electrons, with spins paired.
- Hund: for degenerate orbitals, each MO is first occupied singly before spin pairing occurs.

Molecular Orbitals for $\mathbf{L i}_{\mathbf{2}}$ and $\mathrm{Be}_{\mathbf{2}}$

- Each $1 s$ orbital combines with another $1 s$ orbital to give one ${ }^{\mathrm{TM}}{ }_{1 \mathrm{~s}}$ and one ${ }^{\mathrm{TM}}{ }_{1 \mathrm{~s}}$ orbital, both of which are occupied (since Li and Be have $1 s^{2}$ electron configurations).
- Each $2 s$ orbital combines with another $2 s$ orbital give one ${ }^{\mathrm{TM}}{ }_{2 s}$ and one ${ }^{\mathrm{TM}}{ }_{2 s}$ orbital.
- The energies of the $1 s$ and $2 s$ orbitals are sufficiently different so that there is no cross mixing of orbitals (i.e., we do not get $1 s+2 s$).
- Consider the bonding in Li_{2}.
- There are a total of six electrons in Li_{2}.
- two electrons in ${ }^{\mathrm{TM}}{ }_{1 \mathrm{~s}}$.
- two electrons in ${ }^{\mathrm{TM}}{ }_{1 \mathrm{~s}}$.
- two electrons in ${ }^{\mathrm{TM}}{ }_{2 \mathrm{~s}}$.
- zero electrons in ${ }^{\mathrm{TM}^{*}}{ }_{2 \mathrm{~s}}$.
- Therefore the bond order is $1 / 2(4-2)=1$.
- Since the $1 s$ AOs are completely filled, the ${ }^{\mathrm{TM}_{1 \mathrm{~s}}}$ and ${ }^{\mathrm{TM}^{*}}{ }_{1 \mathrm{~s}}$ are filled.
- We generally ignore core electrons in MO diagrams.
- Core electrons usually do not contribute significantly to bonding in molecule formation.
- Consider bonding in Be_{2}.
- There are a total of eight electrons in Be_{2}.
- two electrons in ${ }^{\mathrm{TM}}{ }_{1 \mathrm{~s}}$.
- two electrons in ${ }^{\mathrm{TM}}{ }_{1 s}$.
- two electrons in ${ }^{\mathrm{TM}}{ }_{2 \mathrm{~s}}$.
- two electrons in ${ }^{\mathrm{TM}}{ }_{2 \mathrm{~s}}$.
- Therefore the bond order is $1 / 2(4-4)=0$.
- Be_{2} does not exist.

Molecular Orbitals from $2 \boldsymbol{p}$ Atomic Orbitals

- There are two ways in which two p orbitals can overlap:
- end on so that the resulting MO has electron density on the axis between nuclei (i.e., ${ }^{\text {TM }}$ type orbital).
- Sideways, so that the resulting MO has electron density above and below the axis between nuclei.
- These are called pi ($\overline{\mathrm{O}}$) molecular orbitals.
- The six p-orbitals (two sets of three) must give rise to six MOs:
- \quad тм, тм $^{*}, \nabla, \nabla^{*}, \nabla$ and ∇^{*}.
- Therefore, there are a maximum of two ∇ bonds which can come from p orbitals.
- The relative energies of these six orbitals can change.

Electron Configurations for $\mathbf{B}_{\mathbf{2}}$ Through $\mathbf{N e}_{\mathbf{2}}$

- Features of the energy-level diagrams for these elements are:
- $2 s$ orbitals are lower in energy than $2 p$ orbitals so both ${ }^{\mathrm{TM}}{ }_{2 \mathrm{~s}}$ orbitals $\left({ }^{\mathrm{TM}}{ }_{2 \mathrm{~s}}\right.$ and ${ }^{\mathrm{TM}}{ }_{2 \mathrm{~s}}$) are lower in energy than the lowest energy MO derived from the $2 p$ AOs.
- There is greater overlap between $2 p_{z}$ orbitals.
- They point directly towards one another, so the ${ }^{\mathrm{TM}}{ }_{2 \mathrm{p}} \mathrm{MO}$ is lower in energy than the $\nabla_{2 \mathrm{p}}$ orbitals.
- The ${ }^{\mathrm{TM}}{ }_{2 \mathrm{p}} \mathrm{MO}$ is higher in energy than the $\nabla^{*}{ }_{2 \mathrm{p}}$ orbitals.
- The $\nabla_{2 \mathrm{p}}$ and $\nabla^{*}{ }_{2 \mathrm{p}}$ orbitals are doubly degenerate.
- As the atomic number decreases, it becomes more likely that a $2 s$ orbital on one atom can interact with the $2 p$ orbital on the other.
- As the $2 s-2 p$ interaction increases, the ${ }^{\mathrm{TM}}{ }_{2 \mathrm{~s}} \mathrm{MO}$ lowers in energy and the ${ }^{\mathrm{TM}}{ }_{2 \mathrm{p}}$ orbital increases in energy.
- For $\mathrm{B}_{2}, \mathrm{C}_{2}$, and N_{2} the ${ }^{\mathrm{TM}}{ }_{2 \mathrm{p}}$ orbital is higher in energy than the $\nabla_{2 \mathrm{p}}$.
- For $\mathrm{O}_{2}, \mathrm{~F}_{2}$, and Ne_{2} the ${ }^{\mathrm{TM}}{ }_{2 \mathrm{p}}$ orbital is lower in energy than the $\nabla_{2 \mathrm{p}}$.
- Once we know the relative orbital energies, we add the required number of electrons to the MOs, taking into account Pauli's exclusion principle and Hund's rule.
- As bond order increases,
- bond length decreases.
- bond energy increases.

Electron Configurations and Molecular Properties

- Two types of magnetic behavior are:
- paramagnetism (unpaired electrons in molecule)
- strong attraction between magnetic field and molecule
- diamagnetism (no unpaired electrons in molecule)
- weak repulsion between magnetic field and molecule
- Magnetic behavior is detected by determining the mass of a sample in the presence and absence of a magnetic field.
- A large increase in mass indicates paramagnetism.
- A small decrease in mass indicates diamagnetism.
- Experimentally, O_{2} is paramagnetic.
- The Lewis structure for O_{2} shows no unpaired electrons.
- The MO diagram for O_{2} shows two unpaired electrons in the $\nabla^{*}{ }_{2 p}$ orbital.
- Experimentally, O_{2} has a short bond length ($1.21 \AA$) and high bond dissociation energy (495 $\mathrm{kJ} / \mathrm{mol}$).
- This suggests a double bond.
- The MO diagram for O_{2} predicts both paramagnetism and the double bond (bond order $=2$).

Heteronuclear Diatomic Molecules

- Heteronuclear diatomic molecules contain two different elements.
- If both atoms do not differ greatly in electronegativity, the description of their MOs will be similar to those for homonuclear diatomic molecules.

