Chapter 6. Electronic Structure of Atoms

Lecture Outline

6.1 The Wave Nature of Light

- The electronic structure of an atom refers to the arrangement of electrons.
- Visible light is a form of electromagnetic radiation, or radiant energy.
- Radiation carries energy through space.
- Electromagnetic radiation is characterized by its wave nature.
- All waves have a characteristic wavelength, $\subseteq(l a m b d a)$, and amplitude, A.
- The frequency, $\notin(\mathrm{nu})$, of a wave is the number of cycles that pass a point in one second.
- The units of \notin are $\operatorname{Hertz}\left(1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}\right)$.
- The speed of a wave is given by its frequency multiplied by its wavelength.
- For light, speed is $c=\subseteq \notin$.
- Electromagnetic radiation moves through a vacuum with a speed of $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
- Electromagnetic waves have characteristic wavelengths and frequencies.
- The electromagnetic spectrum is a display of the various types of electromagnetic radiation arranged in order of increasing wavelength.
- Example: visible radiation has wavelengths between 400 nm (violet) and 750 nm (red).

6.2 Quantized Energy and Photons

- Some phenomena cannot be explained using a wave model of light.
- Blackbody radiation is the emission of light from hot objects.
- The photoelectric effect is the emission of electrons from metal surfaces on which light shines.
- Emission spectra are the emissions of light from electronically excited gas atoms.

Hot Objects and the Quantization of Energy

- Heated solids emit radiation (blackbody radiation)
- The wavelength distribution depends on the temperature (i.e., "red hot" objects are cooler than "white hot" objects).
- Planck investigated black body radiation.
- He proposed that energy can only be absorbed or released from atoms in certain amounts.
- These amounts are called quanta.
- A quantum is the smallest amount of energy that can be emitted or absorbed as electromagnetic radiation.
- The relationship between energy and frequency is:

$$
E=h v
$$

- where h is Planck's constant ($6.626 \times 10^{-34} \mathrm{~J}$-s).
- To understand quantization, consider the notes produced by a violin (continuous) and a piano (quantized).
- A violin can produce any note when the fingers are placed at an appropriate spot on the bridge.
- A piano can only produce notes corresponding to the keys on the keyboard.

The Photoelectric Effect and Photons

- The photoelectric effect provides evidence for the particle nature of light.
- It also provides evidence for quantization.
- Einstein assumed that light traveled in energy packets called photons.
- The energy of one photon is $E=h \notin$.
- Light shining on the surface of a metal can cause electrons to be ejected from the metal.
- The electrons will only be ejected if the photons have sufficient energy (work function):
- Below the threshold frequency no electrons are ejected.
- Above the threshold frequency, the excess energy appears as the kinetic energy of the ejected electrons.
- Light has wave-like AND particle-like properties.

6.3 Line Spectra and the Bohr Model

Line Spectra

- Radiation composed of only one wavelength is called monochromatic.
- Radiation that spans a whole array of different wavelengths is called continuous.
- When radiation from a light source, such as a light bulb, is separated into its different wavelength components, a spectrum is produced.
- White light can be separated into a continuous spectrum of colors.
- A rainbow is a continuous spectrum of light produced by the dispersal of sunlight by raindrops or mist.
- Note that on the continuous spectrum there are no dark spots, which would correspond to different lines.
- Not all radiation is continuous.
- A gas placed in a partially evacuated tube and subjected to a high voltage produces single colors of light.
- The spectrum that we see contains radiation of only specific wavelengths; this is called a line spectrum.

Bohr's Model

- Rutherford assumed that electrons orbited the nucleus analogous to planets orbiting the sun.
- However, a charged particle moving in a circular path should lose energy.
- This means that the atom should be unstable according to Rutherford's theory.
- Bohr noted the line spectra of certain elements and assumed that electrons were confined to specific energy states. These were called orbits.
- Bohr's model is based on three postulates:
- Only orbits of specific radii, corresponding to certain definite energies, are permitted for electrons in an atom.
- An electron in a permitted orbit has a specific energy and is an "allowed" energy state.
- Energy is only emitted or absorbed by an electron as it moves from one allowed energy state to another.
- The energy is gained or lost as a photon.

The Energy States of the Hydrogen Atom

- Colors from excited gases arise because electrons move between energy states in the atom.
- Since the energy states are quantized, the light emitted from excited atoms must be quantized and appear as line spectra.
- Bohr showed mathematically that

$$
E=-\left(h c R_{\mathrm{H}}\right)\left(\frac{1}{n^{2}}\right)=\left(-2.18 \times 10^{-18} J\right)\left(\frac{1}{n^{2}}\right)
$$

- where n is the principal quantum number (i.e., $n=1,2,3, \ldots \ldots$) and R_{H} is the Rydberg constant.
- The product $h c R_{\mathrm{H}}=2.18 \times 10^{-18} \mathrm{~J}$.
- The first orbit in the Bohr model has $n=1$ and is closest to the nucleus.
- The furthest orbit in the Bohr model has $n \square \ldots$ and corresponds to $E=0$.
- Electrons in the Bohr model can only move between orbits by absorbing and emitting energy in quanta $(E=h v)$.
- The ground state $=$ the lowest energy state.
- An electron in a higher energy state is said to be in an excited state.
- The amount of energy absorbed or emitted by moving between states is given by

$$
\Delta E=E_{\mathrm{f}}-E_{\mathrm{i}}=h \nu=2.18 \times 10^{-18} J\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)
$$

Limitations of the Bohr Model

- The Bohr Model has several limitations:
- It cannot explain the spectra of atoms other than hydrogen.
- Electrons do not move about the nucleus in circular orbits.
- However, the model introduces two important ideas:
- The energy of an electron is quantized: electrons exist only in certain energy levels described by quantum numbers.
- Energy gain or loss is involved in moving an electron from one energy level to another.

6.4 The Wave Behavior of Matter

- Knowing that light has a particle nature, it seems reasonable to ask whether matter has a wave nature.
- This question was answered by Louis deBroglie.
- Using Einstein's and Planck's equations, deBroglie derived:

$$
\lambda=h / m v
$$

- The momentum, $m v$, is a particle property, whereas λ is a wave property.
- Matter waves is the term used to describe wave characteristics of material particles.
- Therefore, in one equation deBroglie summarized the concepts of waves and particles as they apply to low-mass, high-speed objects.
- As a consequence of deBroglie's discovery, we now have techniques such as X-ray diffraction and electron microscopy to study small objects.

The Uncertainty Principle

- Heisenberg's uncertainty principle: we cannot determine the exact position, direction of motion, and speed of subatomic particles simultaneously.
- For electrons: we cannot determine their momentum and position simultaneously.

6.5 Quantum Mechanics and Atomic Orbitals

- Schrödinger proposed an equation containing both wave and particle terms.
- Solving the equation leads to wave functions, v
- The wave function describes the electron's matter wave.
- The square of the wave function, v^{2}, gives the probability of finding the electron.
- That is, v^{2} gives the electron density for the atom.
- v^{2} is called the probability density.
- Electron density is another way of expressing probability.
- A region of high electron density is one where there is a high probability of finding an electron.

Orbitals and Quantum Numbers

- If we solve the Schrödinger equation we get wave functions and energies for the wave functions.
- We call ψ orbitals.
- Schrödinger's equation requires three quantum numbers:
- Principal quantum number, n. This is the same as Bohr's n.
- As n becomes larger, the atom becomes larger and the electron is further from the nucleus.
- Azimuthal quantum number, l. This quantum number depends on the value of n.
- The values of l begin at 0 and increase to $n-1$.
- We usually use letters for $l(s, p, d$ and f for $l=0,1,2$, and 3).
- This quantum number defines the shape of the orbital.
- Magnetic quantum number, m_{1}.
- This quantum number depends on l.
- The magnetic quantum number has integer values between $-l$ and $+l$.
- Magnetic quantum numbers give the three-dimensional orientation of each orbital.
- A collection of orbitals with the same value of n is called an electron shell.
- A set of orbitals with the same n and l is called a subshell.
- Each subshell is designated by a number and a letter.
- For example, $3 p$ orbitals have $n=3$ and $l=1$.
- Orbitals can be ranked in terms of energy to yield an Aufbau diagram.
- Note that this Aufbau diagram is for a single electron system.
- As n increases note that the spacing between energy levels becomes smaller.

6.6 Representations of Orbitals

The s Orbitals

- All s orbitals are spherical.
- As n increases, the s orbitals get larger.
- As n increases, the number of nodes increases.
- A node is a region in space where the probability of finding an electron is zero.
- $\psi^{2}=0$ at a node.
- For an s orbital the number of nodes is given by $n-1$.
- We can plot a curve of radial probability density vs. distance (r) from the nucleus.
- This curve is the radial probability function for the orbital.

The \boldsymbol{p} Orbitals

- There are three p orbitals: p_{x}, p_{y} and p_{z}.
- The three p orbitals lie along the x-, y-, and z-axes of a Cartesian system.
- The letters correspond to allowed the values of m_{l} of $-1,0$, and +1 .
- The orbitals are dumbbell shaped; each has two lobes.
- As n increases, the p orbitals get larger.
- All p orbitals have a node at the nucleus.

The d and f Orbitals

- There are five d and seven f orbitals.
- Three of the d orbitals lie in a plane bisecting the x-, y-, and z-axes.
- Two of the d orbitals lie in a plane aligned along the x-, y-, and z-axes.
- Four of the d orbitals have four lobes each.
- One d orbital has two lobes and a collar.

6.7 Many-Electron Atoms

Orbitals and Their Energies

- In a many-electron atom, for a given value of n,
- the energy of an orbital increases with increasing value of l.
- Orbitals of the same energy are said to be degenerate.
- For $n \square 2$, the s and p orbitals are no longer degenerate.
- Therefore, the Aufbau diagram looks slightly different for many-electron systems.

Electron Spin and the Pauli Exclusion Principle

- Line spectra of many-electron atoms show each line as a closely spaced pair of lines.
- Stern and Gerlach designed an experiment to determine why.
- A beam of atoms was passed through a slit and into a magnetic field and the atoms were then detected.
- Two spots were found: one with the electrons spinning in one direction and one with the electrons spinning in the opposite direction.
- Since electron spin (electron as a tiny sphere spinning on its own axis) is quantized,
- we define $m_{s}=$ spin magnetic quantum number $= \pm 1 / 2$.
- Pauli's exclusion principle states that no two electrons can have the same set of four quantum numbers.
- Therefore, two electrons in the same orbital must have opposite spins.

6.8 Electron Configurations

- Electron configurations tell us how the electrons are distributed among the various orbitals of an atom.
- The most stable configuration, or ground state, is that in which the electrons are in the lowest possible energy state.
- When writing ground-state electronic configurations:
- electrons fill orbitals in order of increasing energy with no more than two electrons per orbital.
- no two electrons can fill one orbital with the same spin (Pauli).
- for degenerate orbitals, electrons fill each orbital singly before any orbital gets a second electron.
- How do we show spin?
- An arrow pointing upwards has $m_{s}=+1 / 2(\mathrm{spin} u p)$.
- An arrow pointing downwards has $m_{s}=-1 / 2(\operatorname{spin}$ down $)$.

Hund's Rule

- Hund's rule: for degenerate orbitals, the lowest energy is attained when the number of electrons with the same spin is maximized.
- Thus, electrons fill each orbital singly with their spins parallel before any orbital gets a second electron.
- By placing electrons in different orbitals, electron-electron repulsions are minimized.

Condensed Electron Configurations

- Electron configurations may be written using a shorthand notation (condensed electron configuration):
- Write the valence electrons explicitly.
- Valence electrons are electrons in the outer shell.
- These electrons are gained and lost in reactions.
- Write the core electrons corresponding to the filled noble gas in square brackets.
- Core electrons are electrons in the inner shells.
- These are generally not involved in bonding.
- Example:
- P is $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$,
- but Ne is $1 s^{2} 2 s^{2} 2 p^{6}$.
- Therefore, P is $[\mathrm{Ne}] 3 s^{2} 3 p^{3}$.

Transition Metals

- After Ar the d orbitals begin to fill.
- After the $3 d$ orbitals are full the $4 p$ orbitals begin to fill.
- The ten elements between Ti and Zn are called the transition metals, or transition elements.
- The $4 f$ orbitals begin to fill with Ce .
- Note: The electron configuration of La is $[\mathrm{Xe}] 6 s^{2} 5 d^{1}$.
- The $4 f$ orbitals are filled for the elements $\mathrm{Ce}-\mathrm{Lu}$, which are called lanthanide elements (or rare earth elements).
- The $5 f$ orbitals are filled for the elements $\mathrm{Th}-\mathrm{Lr}$, which are called actinide elements.
- Most actinides are not found in nature.

6.9 Electron Configurations and the Periodic Table

- The periodic table can be used as a guide for electron configurations.
- The period number is the value of n.
- Groups 1A and 2A have their s orbitals being filled.
- Groups 3A-8A have their p orbitals being filled.
- The s-block and p-block of the periodic table contain the representative, or main-group, elements.
- Groups 3B-2B have their d orbitals being filled.
- The lanthanides and actinides have their f orbitals being filled.
- The actinides and lanthanide elements are collectively referred to as the f-block metals.
- Note that the $3 d$ orbitals fill after the $4 s$ orbital. Similarly, the $4 f$ orbitals fill after the $5 d$ orbitals.

Anomalous Electron Configurations

- There are many elements that appear to violate the electron configuration guidelines.
- Examples:
- Chromium is $[\mathrm{Ar}] 3 d^{5} 4 s^{1}$ instead of $[\mathrm{Ar}] 3 d^{4} 4 s^{2}$.
- Copper is $[\operatorname{Ar}] 3 d^{10} 4 s^{1}$ instead of $[\mathrm{Ar}] 3 d^{9} 4 s^{2}$.

