Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations

Lecture Outline

3.1 Chemical Equations

- The quantitative nature of chemical formulas and reactions is called stoichiometry.
- Lavoisier observed that mass is conserved in a chemical reaction.
- This observation is known as the law of conservation of mass.
- Chemical equations give a description of a chemical reaction.
- There are two parts to any equation:
- reactants (written to the left of the arrow) and
- products (written to the right of the arrow):

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \square 2 \mathrm{H}_{2} \mathrm{O}
$$

- There are two sets of numbers in a chemical equation:
- numbers in front of the chemical formulas (called stoichiometric coefficients) and
- numbers in the formulas (they appear as subscripts).
- Stoichiometric coefficients give the ratio in which the reactants and products exist.
- The subscripts give the ratio in which the atoms are found in the molecule.
- Example:
- $\mathrm{H}_{2} \mathrm{O}$ means there are two H atoms for each one molecule of water.
- $\mathbf{2} \mathrm{H}_{2} \mathrm{O}$ means that there are two water molecules present.
- Note: in $2 \mathrm{H}_{2} \mathrm{O}$ there are four hydrogen atoms present (two for each water molecule).

Balancing Equations

- Matter cannot be lost in any chemical reaction.
- Therefore, the products of a chemical reaction have to account for all the atoms present in the reactants--we must balance the chemical equation.
- When balancing a chemical equation we adjust the stoichiometric coefficients in front of chemical formulas.
- Subscripts in a formula are never changed when balancing an equation.
- Example: the reaction of methane with oxygen:

$$
\mathrm{CH}_{4}+\mathrm{O}_{2} \square \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

- Counting atoms in the reactants yields:
- 1 C ;
- 4 H ; and
- 2 O .
- In the products we see:
- 1 C ;
- 2 H ; and
- 30 .
- It appears as though an H has been lost and an O has been created.
- To balance the equation, we adjust the stoichiometric coefficients:

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \square \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

Indicating the States of Reactants and Products

- The physical state of each reactant and product may be added to the equation:

$$
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \square \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)
$$

- Reaction conditions occasionally appear above or below the reaction arrow (e.g., " ∞ " is often used to indicate the addition of heat).

3.2 Some Simple Patterns of Chemical Reactivity

Combination and Decomposition Reactions

- In combination reactions two or more substances react to form one product.
- Combination reactions have more reactants than products.
- Consider the reaction:

$$
2 \mathrm{Mg}(s)+\mathrm{O}_{2}(g) \square 2 \mathrm{MgO}(s)
$$

- Since there are fewer products than reactants, the Mg has combined with O_{2} to form MgO .
- Note that the structure of the reactants has changed.
- Mg consists of closely packed atoms and O_{2} consists of dispersed molecules.
- MgO consists of a lattice of Mg^{2+} and O^{2-} ions.
- In decomposition reactions one substance undergoes a reaction to produce two or more other substances.
- Decomposition reactions have more products than reactants.
- Consider the reaction that occurs in an automobile air bag:

$$
2 \mathrm{NaN}_{3}(s) \square 2 \mathrm{Na}(s)+3 \mathrm{~N}_{2}(g)
$$

- Since there are more products than reactants, the sodium azide has decomposed into sodium metal and nitrogen gas.

Combustion in Air

- Combustion reactions are rapid reactions that produce a flame.
- Most combustion reactions involve the reaction of $\mathrm{O}_{2}(\mathrm{~g})$ from air.
- Example: combustion of a hydrocarbon (propane) to produce carbon dioxide and water.

$$
\mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g) \square 3 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(l)
$$

3.3 Formula Weights

Formula and Molecular Weights

- Formula weight (FW) is the sum of atomic weights for the atoms shown in the chemical formula.
- Example: $\mathrm{FW}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$
- $=2 \mathrm{AW}(\mathrm{H})+\mathrm{AW}(\mathrm{S})+4 \mathrm{AW}(\mathrm{O})$
- $=2(1.0 \mathrm{amu})+32.1 \mathrm{amu}+4(16.0 \mathrm{amu})$
- $=98.1 \mathrm{amu}$.
- Molecular weight (MW) is the sum of the atomic weights of the atoms in a molecule as shown in the molecular formula.
- Example: $\mathrm{MW}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$
- $=6(12.0 \mathrm{amu})+12(1.0 \mathrm{amu})+6(16.0 \mathrm{amu})$
- $=180.0 \mathrm{amu}$.
- Formula weight of the repeating unit (formula unit) is used for ionic substances.
- Example: $\mathrm{FW}(\mathrm{NaCl})$
- $=23.0 \mathrm{amu}+35.5 \mathrm{amu}$
- $=58.5 \mathrm{amu}$.

Percentage Composition from Formulas

- Percentage composition is obtained by dividing the mass contributed by each element (number of atoms times AW) by the formula weight of the compound and multiplying by 100 .
$\%$ element $=\frac{(\text { number of atoms of that element })(\text { atomic weight of element })(100)}{(\text { formula weight of compound })}$

3.4 Avogadro's Number and The Mole

- The mole (abbreviated "mol") is a convenient measure of chemical quantities.
- 1 mole of something $=6.0221421 \times 10^{23}$ of that thing.
- This number is called Avogadro's number.
- Thus, 1 mole of carbon atoms $=6.0221421 \times 10^{23}$ carbon atoms.
- Experimentally, 1 mole of ${ }^{12} \mathrm{C}$ has a mass of 12 g .

Molar Mass

- The mass in grams of 1 mole of substance is said to be the molar mass of that substance. Molar mass has units of $\mathrm{g} / \mathrm{mol}$ (also written $\mathrm{g} \mid \mathrm{mol}^{-1}$).
- The mass of 1 mole of ${ }^{12} \mathrm{C}=12 \mathrm{~g}$.
- The molar mass of a molecule is the sum of the molar masses of the atoms:
- Example: The molar mass of $\mathrm{N}_{2}=2 \times$ (molar mass of N).
- Molar masses for elements are found on the periodic table.
- The formula weight (in amu) is numerically equal to the molar mass (in $\mathrm{g} / \mathrm{mol}$).

Interconverting Masses and Moles

- Look at units:
- Mass: g
- Moles: mol
- Molar mass: $\mathrm{g} / \mathrm{mol}$
- To convert between grams and moles, we use the molar mass.

Interconverting Masses and Number of Particles

- Units:
- Number of particles: $6.022 \times 10^{23} \mathrm{~mol}^{-1}$ (Avogadro's number).
- Note: $\mathrm{g} / \mathrm{mol} \mathrm{x} \mathrm{mol}=\mathrm{g}$ (i.e. molar mass x moles $=$ mass), and
- $\mathrm{mol} \mathrm{x} \mathrm{mol}^{-1}=$ a number (i.e. moles x Avogadro's number $=$ molecules).
- To convert between moles and molecules we use Avogadro's number.

3.5 Empirical Formulas from Analyses

- Recall that the empirical formula gives the relative number of atoms of each element in the molecule.
- Finding empirical formula from mass percent data:
- We start with the mass percent of elements (i.e. empirical data) and calculate a formula.
- Assume we start with 100 g of sample.
- The mass percent then translates as the number of grams of each element in 100 g of sample.
- From these masses, the number of moles can be calculated (using the atomic weights from the periodic table).
- The lowest whole-number ratio of moles is the empirical formula.
- Finding the empirical mass percent of elements from the empirical formula.
- If we have the empirical formula, we know how many moles of each element is present in one mole of the sample.
- Then we use molar masses (or atomic weights) to convert to grams of each element.
- We divide the number of grams of each element by the number of grams of 1 mole of sample to get the fraction of each element in 1 mole of sample.
- Multiply each fraction by 100 to convert to a percent.

Molecular Formula from Empirical Formula

- The empirical formula (relative ratio of elements in the molecule) may not be the molecular formula (actual ratio of elements in the molecule).
- Example: ascorbic acid (vitamin C) has the empirical formula $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}$.
- The molecular formula is $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$.
- To get the molecular formula from the empirical formula, we need to know the molecular weight, MW.
- The ratio of molecular weight (MW) to formula weight (FW) of the empirical formula must be a whole number.

Combustion Analysis

- Empirical formulas are routinely determined by combustion analysis.
- A sample containing C, H, and O is combusted in excess oxygen to produce CO_{2} and $\mathrm{H}_{2} \mathrm{O}$.
- The amount of CO_{2} gives the amount of C originally present in the sample.
- The amount of $\mathrm{H}_{2} \mathrm{O}$ gives the amount of H originally present in the sample.
- Watch the stoichiometry: $1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ contains 2 mol H .
- The amount of O originally present in the sample is given by the difference between the amount of sample and the amount of C and H accounted for.
- More complicated methods can be used to quantify the amounts of other elements present, but they rely on analogous methods.

3.6 Quantitative Information from Balanced Equations

- The coefficients in a balanced chemical equation give the relative numbers of molecules (or formula units) involved in the reaction.
- The stoichiometric coefficients in the balanced equation may be interpreted as:
- the relative numbers of molecules or formula units involved in the reaction or
- the relative numbers of moles involved in the reaction.
- The molar quantities indicated by the coefficients in a balanced equation are called stoichiometrically equivalent quantities.
- Stoichiometric relations or ratios may be used to convert between quantities of reactants and products in a reaction.
- It is important to realize that the stoichiometric ratios are the ideal proportions in which reactants are needed to form products.
- The number of grams of reactant cannot be directly related to the number of grams of product.
- To get grams of product from grams of reactant:
- convert grams of reactant to moles of reactant (use molar mass),
- convert moles of one reactant to moles of other reactants and products (use the stoichiometric ratio from the balanced chemical equation), and then
- convert moles back into grams for desired product (use molar mass).

3.7 Limiting Reactants

- It is not necessary to have all reactants present in stoichiometric amounts.
- Often, one or more reactants is present in excess.
- Therefore, at the end of reaction those reactants present in excess will still be in the reaction mixture.
- The one or more reactants that are completely consumed are called the limiting reactants or limiting reagents.
- Reactants present in excess are called excess reactants or excess reagents.
- Consider $10 \mathrm{H}_{2}$ molecules mixed with $7 \mathrm{O}_{2}$ molecules to form water.
- The balanced chemical equation tells us that the stoichiometric ratio of H_{2} to O_{2} is 2 to 1 :

$$
2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \square 2 \mathrm{H}_{2} \mathrm{O}(l)
$$

- This means that our $10 \mathrm{H}_{2}$ molecules require $5 \mathrm{O}_{2}$ molecules (2:1).
- Since we have $7 \mathrm{O}_{2}$ molecules, our reaction is limited by the amount of H_{2} we have (the O_{2} is present in excess).
- So, all $10 \mathrm{H}_{2}$ molecules can (and do) react with 5 of the O_{2} molecules producing $10 \mathrm{H}_{2} \mathrm{O}$ molecules.
- At the end of the reaction, $2 \mathrm{O}_{2}$ molecules remain unreacted.

Theoretical Yields

- The amount of product predicted from stoichiometry, taking into account limiting reagents, is called the theoretical yield.
- This is often different from the actual yield -- the amount of product actually obtained in the reaction.
- The percent yield relates the actual yield (amount of material recovered in the laboratory) to the theoretical yield:

$$
\text { Percent y ield }=\frac{\text { actual y ield }}{\text { theoretical yield }} \times 100
$$

